HOMEWORK 3

Due on Friday, October 19th, in class.

Exercise 1. Let $q \geq 2$ be a prime number. Recall the equivalence relation on \mathbb{Z} defined as follows: for $m, n \in \mathbb{Z}$, we write $m \sim n$ if q | (m - n). For $n \in \mathbb{Z}$, denote by C(n) the equivalence class of n. Let $\mathbb{Z}/q\mathbb{Z}$ denote the set of equivalence classes. Define addition and multiplication on $\mathbb{Z}/q\mathbb{Z}$ as follows:

$$C(n) + C(m) = C(n+m)$$
 and $C(n) \cdot C(m) = C(nm)$.

- 1) Prove that addition and multiplication are well defined, that is, the result is independent of the representatives chosen from the equivalence classes.
- 2) Verify that with these operations $\mathbb{Z}/q\mathbb{Z}$ is a field.
- 3) Show that there is no order relation on $\mathbb{Z}/q\mathbb{Z}$ that makes it an ordered field.

Exercise 2. Define two internal laws of composition on $R = \mathbb{R} \times \mathbb{R}$ as follows:

$$(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$$

 $(a_1, a_2) \cdot (b_1, b_2) = (a_1b_1 - a_2b_2, a_1b_2 + a_2b_1).$

- 1) Show that with these operations R is a field.
- 2) Show that there is no order relation on R that makes R an ordered ring.

Exercise 3. Show that if a sequence $\{a_n\}_{n\in\mathbb{N}}$ of real numbers converges to a, then the sequence $\{|a_n|\}_{n\in\mathbb{N}}$ converges to |a|. Show (via an example) that the converse is not true.

Exercise 4. Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of rational numbers defined as follows:

$$a_1 = 1$$
 and $a_{n+1} = a_n + \frac{1}{3^n}$ for all $n \ge 1$.

Show that the sequence $\{a_n\}_{n\in\mathbb{N}}$ converges and find its limit.

Exercise 5. Let $\{a_n\}_{n\geq 1}$ and $\{b_n\}_{n\geq 1}$ be two sequences of real numbers such that $\{a_n\}_{n\geq 1}$ is bounded and $\{b_n\}_{n\geq 1}$ converges to 0. Show that the sequence $\{a_nb_n\}_{n\geq 1}$ converges to 0.

Exercise 6. Let $\{a_n\}_{n\geq 1}$, $\{b_n\}_{n\geq 1}$ and $\{c_n\}_{n\geq 1}$ be three convergent sequences of real numbers such that

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n \quad \text{and} \quad a_n \le b_n \le c_n \text{ for all } n \ge 1.$$

Show that $\lim_{n\to\infty} b_n = \lim_{n\to\infty} a_n$.

Exercise 7. Prove that

$$\lim_{n \to \infty} \sqrt{4n^2 + n} - 2n = \frac{1}{4}.$$

Exercise 8. Let $\{a_n\}_{n\geq 1}$ be a convergent sequence of real numbers.

- 1) Show that if for all but finitely many a_n we have $a_n \geq a$, then $\lim_{n\to\infty} a_n \geq a$.
- 2) Show that if for all but finitely many a_n we have $a_n \leq b$, then $\lim_{n \to \infty} a_n \leq b$.
- 3) Conclude that if all but finitely many a_n belong to the interval [a, b], then $\lim_{n\to\infty} a_n \in [a, b]$.

Exercise 9. Let $\{a_n\}_{n\geq 1}$ be a convergent sequence of real numbers and let $a\in\mathbb{R}$ such that $\lim_{n\to\infty}a_n>a$. Show that there exist $n_0\in\mathbb{N}$ such that $a_n>a$ for all $n\geq n_0$.