HOMEWORK 10

Exercise 1. Consider the metric space $(X,d) = (\mathbb{R}, |\cdot|)$. For each of the following subsets of \mathbb{R} decide if they are open, closed, or not open and not closed, connected or not connected. Also, in each case write down the set of accumulation points. Justify your answers.

- 1) $A = \mathbb{Q}$.
- 2) $A = \mathbb{Q} \cap [0, 1]$.
- 3) $A = \{(-1)^n (1 + \frac{1}{n})\}.$ 4) $A = \bigcup_{n \in \mathbb{N}} [n, n + \frac{1}{n}].$ 5) $A = \bigcup_{n \in \mathbb{N}} [\frac{1}{2^{n+1}}, \frac{1}{2^n}].$

Exercise 2. Give an example of a set $\emptyset \neq A \subsetneq \mathbb{Q}$ that that is both open and closed in Q. Justify your answer.

Exercise 3. Assume that the sets A and B are separated and let $A_1 \subseteq A$ and $B_1 \subseteq B$. Prove that A_1 and B_1 are separated.

Exercise 4. Assume that the sets A and B are separated and that the sets A and C are separated. Prove that the sets A and $B \cup C$ are separated.

Exercise 5. If A and B are closed sets, prove that $A \setminus B$ and $B \setminus A$ are separated.

Exercise 6. Let (X,d) be a connected metric space and let A be a connected subset of X. Assume that the complement of A is the union of two separated sets B and C. Prove that $A \cup B$ and $A \cup C$ are connected. Prove also that if A is closed, then so are $A \cup B$ and $A \cup C$.

Exercise 7. Let (X,d) be a metric space and let A,B be two closed subsets of Xsuch that $A \cup B$ and $A \cap B$ are connected. Prove that A is connected.

Exercise 8. Let $\{A_i\}_{i\in I}$ be a family of connected sets such that one set of the family intersects all the others. Prove that $\cup_{i \in I} A_i$ is connected.

Exercise 9. Let (X,d) be a metric space and let A,B be two subsets of X such that $A \cap B \neq \emptyset$ and $B \setminus A \neq \emptyset$. Assume also that B is connected. Prove that $Fr(A) \cap B \neq \emptyset$. Deduce that if X is connected, then every subset of X, other than \emptyset or X, has at least one frontier point.

Exercise 10. Let (X,d) be a complete metric space and let $\{G_n\}_{n\geq 1}$ be a sequence of dense open subsets of X. Show that $\cap_{n>1}G_n$ has the Baire property.

Exercise 11. Show that $(\mathbb{R} \setminus \mathbb{Q}) \cap [0,1]$ has the Baire property.