HOMEWORK 9

Exercise 1. Let (X,d) be a metric space. Prove that if a sequence $\{x_n\}_{n\geq 1}\subseteq X$ converges in X, then its limit is unique.

Exercise 2. Let (X,d) be a metric space. Prove that a sequence $\{x_n\}_{n\geq 1}\subseteq X$ converges to some $x \in X$ if and only if every subsequence of $\{x_n\}_{n\geq 1}$ converges to x.

Exercise 3. Let (X,d) be a metric space and let $\{x_n\}_{n\geq 1}\subseteq X$ be a convergent sequence. Prove that $\{x_n\}_{n\geq 1}$ is bounded, that is, there exist $a\in X$ and r>0such that $\{x_n\}_{n\geq 1}\subseteq B_r(a)$.

Exercise 4. Let (X,d) be a metric space and let $A\subseteq X$ be complete. Show that A is closed.

Exercise 5. Let (X,d) be a complete metric space and let $F \subseteq X$ be a closed set. Show that F is complete.

Exercise 6. Let

$$l^{\infty} = \{\{x_n\}_{n \ge 1} \subseteq \mathbb{R} | \sup_{n \ge 1} |x_n| < \infty\}.$$

 $l^{\infty} = \{\{x_n\}_{n\geq 1} \subseteq \mathbb{R} | \sup_{n\geq 1} |x_n| < \infty\}.$ Define $d_{\infty}: l^{\infty} \times l^{\infty} \to \mathbb{R}$ as follows: for any $x = \{x_n\}_{n\geq 1} \in l^{\infty}, y = \{y_n\}_{n\geq 1} \in l^{\infty},$

$$d_{\infty}(x,y) = \sup_{n \ge 1} |x_n - y_n|.$$

Show that (l^{∞}, d_{∞}) is a complete metric space.

Exercise 7. Let \mathbb{R}^n be endowed with the Euclidean metric d_2 . Let S be a nonempty subset of \mathbb{R}^n ; in particular, $(S, d_2|_{S \times S})$ is a metric space.

- 1) Given $x \in S$, is the set $\{y \in S : d_2(x,y) \ge r\}$ closed in S?
- 2) Given $x \in S$, is the set $\{y \in S : d_2(x,y) \geq r\}$ contained in the closure of ${y \in S : d_2(x,y) > r}$ in S?

Exercise 8. Let (X,d) be a complete metric space and let $\{F_n\}_{n\geq 1}$ be a sequence of non-empty closed subsets of X such that $F_{n+1} \subseteq F_n$ for all $n \ge 1$ and $\delta(F_n) \to 0$. Show that there exists $x \in X$ such that $\cap_{n \geq 1} F_n = \{x\}$.