HOMEWORK 8

Exercise 1. Let (X, d) be a metric space and let A, B be two non-empty subsets of X. Prove that if $A \cap B \neq \emptyset$, then we have the following inequality for the diameters:

$$\delta(A \cup B) \le \delta(A) + \delta(B).$$

Exercise 2. Let X be a non-empty set and let $d : X \times X \to \mathbb{R}$ be the discrete metric on X defined as follows: for any $x, y \in X$,

$$d(x,y) = \begin{cases} 0, & \text{if } x = y\\ 1, & \text{if } x \neq y. \end{cases}$$

Find the open and the closed subsets of this metric space.

Exercise 3. Let (X, d_1) be a metric space and let $d_2 : X \times X \to \mathbb{R}$ be the metric defined as follows: for any $x, y \in X$,

$$d_2(x,y) = \frac{d_1(x,y)}{1+d_1(x,y)}.$$

Prove that a subset A of X is open with respect to the distance d_1 if and only if it is open with respect to the distance d_2 .

Exercise 4. Let $1 \leq p, q \leq \infty$ and consider the two metrics on \mathbb{R}^n given by

$$d_p(x,y) = \left(\sum_{k=1}^n |x_k - y_k|^p\right)^{1/p}$$
 and $d_q(x,y) = \left(\sum_{k=1}^n |x_k - y_k|^q\right)^{1/q}$,

with the obvious modifications if p or q are infinity. Prove that a set $A \subseteq \mathbb{R}^n$ is open with respect to the metric d_p if and only if it is open with respect to the distance d_q .

Exercise 5. Let (X, d) be a metric space and let A be a non-empty subset of X. Prove that A is open if and only if it can be written as the union of a family of open balls of the form $B_r(x) = \{y \in X : d(x, y) < r\}.$

Exercise 6. Fix r > 0. Let (X, d) be a metric space and let A be a non-empty subset of X with diameter $\delta(A) < r$. Let $a \in X$ and assume that $A \cap B_r(a) \neq \emptyset$. Then $A \subseteq B_{2r}(a)$.

Exercise 7. Let (X, d) be a metric space and let A, B be two non-empty subsets of X. Prove that

$$A^{\circ} \cap B^{\circ} = (A \cap B)^{\circ}$$
 and $(A^{\circ})^{\circ} = A^{\circ}$.

Exercise 8. Let (X, d) be a metric space and let A be a subset of X. Prove that a point $x \in X$ is an adherent point of A if and only if d(x, A) = 0.

Exercise 9. Let (X, d) be a metric space and let A be a subset of X. Prove that the diameter of A is equal to the diameter of the closure of A, that is, $\delta(A) = \delta(\overline{A})$.

Exercise 10. Let (X, d) be a metric space and let A be a subset of X and O be an open subset of X. Prove that

$$O \cap \overline{A} \subseteq \overline{O \cap A}$$
 and $O \cap \overline{A} = \overline{O \cap A}$.

Conclude that if $O \cap A = \emptyset$, then $O \cap \overline{A} = \emptyset$.

Exercise 11. Let (X, d) be a metric space and let $a \in X$ and r > 0. Prove that the closed ball $K_r(a) = \{x \in X : d(x, a) \le r\}$ is a closed set.

Exercise 12. Let (X, d) be a metric space and let A, B be two subsets of X. Prove that

$$Fr(A \cup B) \subseteq Fr(A) \cup Fr(B).$$

Show also that if $\overline{A} \cap \overline{B} = \emptyset$, then $Fr(A \cup B) = Fr(A) \cup Fr(B)$.

Exercise 13. Let (X, d) be a metric space and let A be a subset of X. Prove that

$$Fr(A) \subseteq Fr(A)$$

$$Fr(A^{\circ}) \subseteq Fr(A)$$

$$\bar{A} = A^{\circ} \cup Fr(A).$$

Exercise 14. Let (X, d) be a metric space and let A be a subset of X. Prove that A is closed if and only if $Fr(A) \subseteq A$.

Exercise 15. Let (X, d) be a metric space and let A be a subset of X. Prove that A is open if and only if $Fr(A) \cap A = \emptyset$.