HOMEWORK 7

Exercise 1. If the set A has n elements and the set B has m elements, show that there are m^n many functions from A to B.

Exercise 2. Fix $n \ge 1$. Show that if A_1, A_2, \ldots, A_n are countable, then $A_1 \times A_2 \times \ldots \times A_n$ is countable.

Exercise 3. If $A \sim B$, show that $\mathcal{P}(A) \sim \mathcal{P}(B)$.

Exercise 4. Prove that $\mathcal{P}(\mathbb{N})$ is equivalent with the set of functions

 $2^{\mathbb{N}} = \{ f : \mathbb{N} \to \{0, 1\} : f \text{ is a function} \}.$

In particular, the cardinality of $\mathcal{P}(\mathbb{N})$ is 2^{\aleph_0} .

Exercise 5. Show that $\mathbb{N}^{\mathbb{N}} \sim 2^{\mathbb{N}}$, that is, the set of sequences with values in \mathbb{N} is equivalent with the set of sequences with values in $\{0, 1\}$.

Exercise 6. Show that the cardinality of \mathbb{R} is 2^{\aleph_0} . You may use the fact that the interval (0,1) has cardinality 2^{\aleph_0} .

Exercise 7. Prove that the set of irrational numbers has the cardinality of \mathbb{R} .