HOMEWORK 10

Exercise 1. Let $F \subseteq \mathbb{R}$ be a closed set bounded above. Prove that the least upper bound of F belongs to F.

Exercise 2. Let (X, d) be a metric space. Prove that a set $F \subseteq X$ is closed if and only if every convergent sequence in F has the property that its limit belongs to F.

Exercise 3. Consider the metric space $(X, d) = (\mathbb{R}, |\cdot|)$. For each of the following subsets of \mathbb{R} decide if they are open, closed, or not open and not closed, connected or not connected. Also, in each case write down the set of accumulation points. Justify your answers.

 $\begin{array}{l} 1) \ A = \mathbb{Q}. \\ 2) \ A = \mathbb{Q} \cap [0,1]. \\ 3) \ A = \{(-1)^n (1+\frac{1}{n})\}. \\ 4) \ A = \bigcup_{n \in \mathbb{N}} [n,n+\frac{1}{n}]. \\ 5) \ A = \bigcup_{n \in \mathbb{N}} [\frac{1}{2^{n+1}},\frac{1}{2^n}]. \end{array}$

Exercise 4. Assume that the sets A and B are separated and let $A_1 \subseteq A$ and $B_1 \subseteq B$. Prove that A_1 and B_1 are separated.

Exercise 5. Assume that the sets A and B are separated and that the sets A and C are separated. Prove that the sets A and $B \cup C$ are separated.

Exercise 6. If A and B are closed sets, prove that $A \setminus B$ and $B \setminus A$ are separated.

Exercise 7. Let (X, d) be a connected metric space and let A be a connected subset of X. Assume that the complement of A is the union of two separated sets B and C. Prove that $A \cup B$ and $A \cup C$ are connected. Prove also that if A is closed, then so are $A \cup B$ and $A \cup C$.

Exercise 8. Let (X, d) be a metric space and let A, B be two closed subsets of X such that $A \cup B$ and $A \cap B$ are connected. Prove that A is connected.

Exercise 9. Let $\{A_i\}_{i \in I}$ be a family of connected sets such that one set of the family intersects all the others. Prove that $\bigcup_{i \in I} A_i$ is connected.

Exercise 10. Let (X, d) be a metric space and let A, B be two subsets of X such that $A \cap B \neq \emptyset$ and $B \setminus A \neq \emptyset$. Assume also that B is connected. Prove that $Fr(A) \cap B \neq \emptyset$. Deduce that if X is connected, then every subset of X, other than \emptyset or X, has at least one frontier point.