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Abstract. Let E be a Banach space, with unit ball BE . We study
the spectrum and the essential spectrum of a composition operator on
H∞(BE) determined by an analytic symbol with a fixed point in BE . We
relate the spectrum of the composition operator to that of the derivative
of the symbol at the fixed point. We extend a theorem of Zheng to the
context of analytic symbols on the open unit ball of a Hilbert space.

1. Introduction

Let E denote a complex Banach space with open unit ball BE and let
ϕ : BE → BE be an analytic map. In this paper, we consider composition
operators Cϕ defined by Cϕ(f) = f ◦ ϕ, acting on the uniform algebra
H∞(BE) of bounded analytic functions on BE . Evidently Cϕ is bounded,
and ||Cϕ|| = 1 = Cϕ(1). We are interested in the spectrum and the essential
spectrum of Cϕ. We focus on the case in which ϕ has a fixed point z0 ∈ BE .
Our goal is twofold. The first is to relate the spectrum of Cϕ to that of
ϕ′(z0). The second is to establish an analog for higher dimensions of Zheng’s
theorem on the spectrum of composition operators on H∞(D).

This paper is a continuation of [1], [8], and [9]. It is shown in [9] that the
essential spectral radius of a composition operator on a uniform algebra is
strictly less than 1 if and only if the iterates of its symbol converge in the
norm of the dual to a finite number of attracting cycles. In the case at hand,
the attracting cycles reduce to a single fixed point z0 ∈ BE . Among other
things, we show under this condition that the essential spectral radius of Cϕ

coincides with that of ϕ′(z0).
In [20], Zheng studies composition operators Cϕ on H∞(D), where D is

the open unit disk in the complex plane. Under the assumption that ϕ has
an attracting fixed point in D, she proves that either Cϕ is power compact,
in which case the essential spectral radius of Cϕ is 0, or the spectrum of Cϕ
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coincides with the closed unit disk. Our generalization of Zheng’s theorem
applies to the unit ball of Cn and also, subject to a compactness condition,
to the unit ball of Hilbert space.

Before outlining the contents of the paper, we establish some notation.
We denote by ϕn the nfold iterate of ϕ, so that ϕn = ϕ ◦ ϕ ◦ · · · ◦ ϕ (n
times). The spectrum and the spectral radius of an operator T are denoted
respectively by σ(T ) and r(T ). The essential spectrum of T is denoted by
σe(T ). It is defined to consist of all complex numbers λ such that λI − T is
not a Fredholm operator. The essential spectral radius of T is denoted by
re(T ). If re(T ) = 0, then T is said to be a Riesz operator. For background
information on the essential spectrum and on Fredholm operators, see [17].
For background information on analytic functions on Banach spaces and
the associated tensor product spaces, see [6], [10], or [16]. References on
composition operators on uniform algebras are [14], [15], [11], and [12].

The paper is organized as follows. After some preliminary lemmas on
lower triangular matrices in Section 2, we treat in Section 3 the lower tri-
angular representation of Cϕ corresponding to the Taylor series expansion
of functions in H∞(BE) at the fixed point z0. The results are applied in
Section 4 to the case where re(Cϕ) < 1. There we connect the spectrum and
essential spectrum of Cϕ to that of ϕ′(z0). In particular, we show that if
Cϕ is a Riesz operator, then ϕ′(z0) is a Riesz operator, and we describe the
spectrum of Cϕ in terms of that of ϕ′(z0). This generalizes the corresponding
result obtained in [1] for compact composition operators.

Sections 5 and 6 contain preparatory material for the generalization of
Zheng’s theorem. In Section 5 we observe that the interpolation operators
constructed by B. Berndtsson [2] for the unit ball of Cn yield an interpolation
theorem for sequences in the unit ball BH of Hilbert space H that tend ex-
ponentially to the boundary. In Section 6 we establish a Julia-type estimate
for analytic self-maps of BH as the variable tends to the boundary through
an approach region that clusters on a compact subset of the unit sphere.
These results are combined in Section 7 to establish the generalization of
Zheng’s theorem.

2. Spectra of Lower Triangular Operators

We begin with the following elementary fact.

Lemma 2.1. A lower triangular square matrix with entries in a unital ring
is invertible and has a lower triangular inverse if and only if the diagonal
entries of the matrix are invertible.

Proof. Backsolve. ¤

We will be interested in operators on a direct sum X = X1 ⊕ · · · ⊕ Xn

of Banach spaces. Such an operator S leaves invariant each direct subsum
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Xk ⊕ · · · ⊕ Xn, 2 ≤ k ≤ n, if and only if S has a lower triangular matrix
representation

S =




S11 0 0 . . . 0
S21 S22 0 . . . 0
...

. . . . . . . . . Sn−1,n−1 0
Sn1 Sn2 . . . Sn,n−1 Snn




,(2.1)

where Sjk : Xj → Xk. From the preceding lemma, applied to the lower
triangular matrix operator λI−S, we see that if each of the diagonal entries
λI − Sjj is an invertible operator on its space Xj , then λI − S is invertible.
Similarly, if we apply the lemma to the quotient ring of operators modulo
compact operators, we see that if each of the diagonal entries λI − Sjj is a
Fredholm operator on its space Xj , then λI − S is a Fredholm operator on
X. This yields the following lemma.

Lemma 2.2. Let X = X1⊕· · ·⊕Xn be a direct sum of Banach spaces, and
let S be an operator on X with lower triangular matrix representation (2.1).
Then

σ(S) ⊆ σ(S11) ∪ · · · ∪ σ(Snn),(2.2)

and

σe(S) ⊆ σe(S11) ∪ · · · ∪ σe(Snn),(2.3)

where σ(Sjj) and σe(Sjj) are respectively the spectrum and essential spec-
trum of Sjj operating on Xj.

It can occur that the inclusions in (2.2) and (2.3) are strict. Nevertheless
we have the following.

Lemma 2.3. Let X = X1 ⊕ · · · ⊕ Xn be a direct sum of Banach spaces,
and let S be an operator on X with lower triangular matrix representation
(2.1). Let Ω be the unbounded component of the complement of σe(S11) ∪
· · · ∪ σe(Sn−1,n−1) in the complex plane C. Then

σ(S) ∩ Ω = (σ(S11) ∪ · · · ∪ σ(Snn)) ∩ Ω,(2.4)

σe(S) ∩ Ω = σe(Snn) ∩ Ω.(2.5)

Further, ∂Ω ⊆ σe(S).

Proof. Let λ0 ∈ Ω\σ(S). To establish (2.4), we must show that λ0 /∈
σ(S11)∪· · ·∪σ(Snn), that is, we must show that each λ0I−Sjj is invertible.
We break the argument into two cases.

Suppose first that λ0 /∈ σ(S11) ∪ · · · ∪ σ(Sn−1,n−1). We must show that
λ0 /∈ σ(Snn). For this, let U be the lower triangular (n− 1)× (n− 1) matrix
obtained by striking out the last column and the bottom row of S, so that

S =
(

U 0
V Snn

)
.
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By Lemma 2.1, λ0I−U is invertible and its inverse is lower triangular. The
inverse of λ0I − S then has the form

(λ0I − S)−1 =
(

(λ0I − U)−1 R
T W

)
.

Multiplying by λ0I−S on the left, we find that the column vector R satisfies
(λ0I − U)R = 0. Since λ0I − U is invertible, R = 0. Consequently λ0I − S
has a lower triangular inverse, and W = (λ0I − Snn)−1. In particular,
λ0 /∈ σ(Snn), as required.

For the remaining case, suppose that λ0 ∈ σ(S11) ∪ · · · ∪ σ(Sn−1,n−1).
We will show that this leads to a contradiction. For this, we apply the
first part of the proof to λ’s in a punctured neighborhood of λ0. Since
σ(S11) ∪ · · · ∪ σ(Sn−1,n−1) meets Ω in a discrete subset, by what we have
shown there is a punctured neighborhood of λ0 on which λI−S has a lower
triangular inverse. Letting λ → λ0, we see that the inverse of λ0I−S is also
lower triangular. Hence λ0 /∈ σ(Sjj) for 1 ≤ j ≤ n. This is a contradiction,
and we conclude that (2.4) holds.

The same argument as in the first case above, applied to the quotient
algebra of operators modulo compact operators, shows that if λ ∈ Ω and
λ /∈ σe(S), then λ /∈ σe(Snn). Hence (2.5) holds, and further the inverse of
λI − S modulo the compacts has a lower triangular matrix representation
when λ ∈ Ω\σe(S).

Now let λ0 ∈ ∂Ω, and suppose that λ0 /∈ σe(S). By the preceding re-
mark, there are λ ∈ Ω near λ0 for which the inverse of λI − S modulo the
compacts has a lower triangular matrix representation. Letting λ → λ0, we
see that the inverse of λ0I − S modulo the compacts has a lower triangular
matrix representation. Consequently each of the diagonal entries λ0I − Sjj

is invertible modulo the compacts, and λ0 ∈ Ω. This contradiction shows
that λ0 ∈ σe(S), and the proof is complete. ¤

Corollary 2.4. Let X = X1 ⊕ · · · ⊕Xn be a direct sum of Banach spaces,
and let S be an operator on X with a lower triangular matrix representation
(2.1). If X is infinite dimensional, and the operators S11, . . . , Sn−1,n−1 are
Riesz operators, then σ(S) = σ(S11)∪· · ·∪σ(Snn) and σe(S) = {0}∪σe(Snn).

Proof. Apply the lemma, with Ω = C\{0}. ¤

3. Composition Operators on H∞(BE)

Let E be a Banach space, with open unit ball BE . We will use the
pseudohyperbolic metric ρ(z, w) on BE determined by the uniform algebra
H∞(BE) (see [8], [9]). This is defined for z, w ∈ BE by

ρ(z, w) = sup{ρD(f(z), f(w)) : f ∈ H∞(BE), ||f || < 1},(3.1)

where ρD(ζ, ξ) = |ζ − ξ|/|1− ξ̄ζ| is the pseudohyperbolic metric on the open
unit disk D.
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If BE has a transitive group of automorphisms, then ρ(z, w) is the norm
of the evaluation functional at φ(z) on the subspace of functions in H∞(BE)
that vanish at 0, where φ is any automorphism of BE that maps w to 0. In
the special case that E is a Hilbert space H, the pseudohyperbolic metric
on BH is determined by the explicit formula (see [5], pp. 194-195),

ρ(z, w)2 = 1− (1− ||z||2)(1− ||w||2)
|1− 〈z, w〉|2 , z, w ∈ BH .(3.2)

Now suppose that the analytic map ϕ : BE → BE has a fixed point
z0 ∈ BE , that is, ϕ(z0) = z0. Let Pk be the space of analytic functions f(z)
on E such that f(z) = P (z − z0) for some homogeneous polynomial P on
E of degree k. The Taylor series expansions of functions in H∞(BE) at z0

yield a direct sum decomposition of H∞(BE),

H∞(BE) = P0 ⊕ P1 ⊕ · · · ⊕ Pm−1 ⊕Rm,(3.3)

where the remainder space Rm consists of the functions h ∈ H∞(BE) such
that |h(z)|/||z − z0||m is bounded for z near z0. In other words, a function
belongs to Rm if and only if the terms of its Taylor expansion at z0 vanish
through order m− 1. The maximum principle yields the estimates

|f(z)| ≤ cm||f || ||z − z0||m, f ∈ Rm, ||z − z0|| ≤ 1− ||z0||,(3.4)

where cm = 1/(1 − ||z0||)m and the norm of f is the supremum norm over
BE (see [16], 7.19). The same estimate holds for f ∈ Pk, with cm replaced
by ck.

Now note that the order of vanishing of f ◦ ϕ at z0 is at least as great as
the order of vanishing of f at z0, on account of (3.4). Consequently Rm and
each of the spaces Pk ⊕ · · · ⊕ Pm−1 ⊕Rm are invariant under Cϕ. Thus Cϕ

has a lower triangular representation with respect to the sum decomposition
(3.3), which we denote by

Cϕ =




C00 0 0 . . . 0
C10 C11 . . . . . . 0
...

. . . . . . . . . Cm−1,m−1 0
Cm0 Cm1 . . . Cm,m−1 Qm




.(3.5)

Note that the operator Qm is simply the restriction of Cϕ to Rm. We wish
to identify the other diagonal terms Ckk : Pk → Pk.

Since P0 consists of only the constants, and Cϕf = f for f ∈ P0, we see
that C00 = I and Ck0 = 0 for 1 ≤ k ≤ n. The space P1 is isomorphic to E∗,
and it is straightforward to check that C11 corresponds to the dual of ϕ′(z0)
under the isomorphism. In fact, the diagonal terms Ckk, 1 ≤ k ≤ m − 1,
can all be expressed in terms of operators induced by ϕ on certain tensor
product spaces. We sketch how this is done. (See [6], [10], [16].)

Since our considerations are local, we consider an analytic map ψ of a
neighborhood of 0 ∈ E into E such that ψ(0) = 0. The map ψ induces a map
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⊗̂k
ψ′(0) of the projective tensor product ⊗̂k

E determined by x1⊗· · ·⊗xk →
(ψ′(0)x1)⊗ · · · ⊗ (ψ′(0)xk). The dual of the projective tensor product is the
space L(kE) of continuous k-linear functionals on E, and the dual of ⊗̂k

ψ′(0)
is the operator on L(kE) defined by

((⊗̂k
ψ′(0))∗L)(x1, . . . , xm) = L(ψ′(0)x1, . . . , ψ

′(0)xm).

Clearly ||⊗̂k
ψ′(0)|| ≤ ||ψ′(0)||m, and by choosing x1 = · · · = xk and L

appropriately we easily obtain ||⊗̂k
ψ′(0)|| = ||ψ′(0)||m.

The symmetric tensors form a closed subspace ⊗̂k
sE of ⊗̂k

E, whose dual
is the space Ls(kE) of symmetric k-linear functionals on E. The usual
symmetrization operation yields norm-one projections of ⊗̂k

E onto ⊗̂k
sE

and of L(kE) onto Ls(kE), which are dual. Symmetrization commutes with
the operator ⊗̂k

ψ′(0) and its dual, so that in particular ⊗̂k
ψ′(0) leaves ⊗̂k

sE

invariant. We denote by ⊗̂k
sψ

′(0) the restriction of ⊗̂k
ψ′(0) to ⊗̂k

sE. The
dual operator (⊗̂k

sψ
′(0))∗ is then the restriction of (⊗̂k

ψ′(0))∗ to Ls(kE).
One checks that

||⊗̂k
sψ

′(0)|| = ||ψ′(0)||k, k ≥ 1.

Lemma 3.1. With the notation introduced above, we have

σ(⊗̂k
ψ′(0)) = {λ1 · · ·λk : λj ∈ σ(ψ′(0)), 1 ≤ j ≤ k},(3.6)

σe(⊗̂k
ψ′(0)) = {λ1 · · ·λk : λ1 ∈ σe(ψ′(0)), λj ∈ σ(ψ′(0)), 2 ≤ j ≤ k}.(3.7)

Further,

σ(⊗̂k
sψ

′(0)) ⊆ σ(⊗̂k
ψ′(0)),(3.8)

σe(⊗̂k
sψ

′(0)) ⊆ σe(⊗̂k
ψ′(0)).(3.9)

Proof. If S and T are bounded operators on a Banach space X, then the
projective tensor product operator S⊗̂T has spectrum σ(S⊗̂T ) = σ(S)σ(T )
(see e.g. [18]) and essential spectrum σe(S⊗̂T ) = σe(S)σ(T ) ∪ σ(S)σe(T )
(see e.g. [19] or [7]). By induction, we obtain (3.6) and (3.7). The inclu-
sions (3.8) and (3.9) follow from the fact that ⊗̂k

sψ
′(0) commutes with the

symmetrization projections. ¤

Let P(kE) denote the space of all analytic functions on E that are k-
homogeneous. The functions in P(kE) are precisely the restrictions to the
diagonal of symmetric k-linear functionals on E, and the restriction operator
is an isomorphism (though not isometry) of Ls(kE) and P(kE). One checks
that under this isomorphism, the operator (⊗k

sψ
′(0))∗ corresponds to the

operator Ckk in the lower triangular representation of Cψ determined by the
decomposition

H∞(BE) = P(0E)⊕ P(1E)⊕ · · · ⊕ P(m−1E)⊕ · · · .
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Now we return to our analytic map ϕ with fixed point z0. The translation
z → z − z0 establishes an isomorphism (though not an isometry unless
z0 = 0) of Pk and P(kE). Applying the preceding discussion to ψ(z) =
ϕ(z0 + z)− z0, we obtain the following.

Lemma 3.2. Let E be a Banach space, and let ϕ : BE → BE be an analytic
map with a fixed point z0 ∈ BE. Let m ≥ 1, and let (3.5) be the associated
lower triangular matrix representation of Cϕ. Then for 1 ≤ k ≤ m − 1,
Ckk is similar to the operator (⊗̂k

sϕ
′(z0))∗ operating on symmetric k-linear

functionals on E. There is a constant ak > 0, depending only on k and z0,
such that

||Ckk|| ≤ ak||ϕ′(z0)||k.
For 1 ≤ k ≤ m− 1

σ(Ckk) ⊆ {λ1 · · ·λk : λj ∈ σ(ϕ′(z0)), 1 ≤ j ≤ k},(3.10)

σe(Ckk) ⊆ {λ1 · · ·λk : λ1 ∈ σe(ϕ′(z0)), λj ∈ σ(ϕ′(z0)), 2 ≤ j ≤ k}.(3.11)

Further, r(Ckk) ≤ r(ϕ′(z0))k and re(Ckk) ≤ re(ϕ′(z0))r(ϕ′(z0))k−1.

We remark that the estimate for the spectral radius of Ckk can also be
obtained directly by applying the norm estimates to the iterates Cn

ϕ and
observing that the lower triangular matrix representation corresponding to
the nth iterate of ϕ has diagonal entries Cn

kk that correspond to ϕ′(z0)n.
Consequently

||Cn
kk|| ≤ ak||ϕ′(z0)n||k ≤ ak||ϕ′(z0)n||k.

Taking nth roots and letting n →∞, we obtain r(Ckk) ≤ r(ϕ′(z0))k.
Now we combine Lemmas 2.2, 2.3, and 3.2, to obtain the main result of

this section.

Theorem 3.3. Let E be a Banach space, and let ϕ : BE → BE be an
analytic map with a fixed point z0 ∈ BE. Let m ≥ 1, and let (3.5) be the
associated lower triangular matrix representation of Cϕ. Let

Λ = {1} ∪ {λ1λ2 · · ·λk : λj ∈ σ(ϕ′(z0)), 1 ≤ j ≤ k, k ≥ 1}.
Then

σ(Cϕ) ⊆ Λ ∪ σ(Qm)(3.12)

and

re(Cϕ) = max{re(ϕ′(z0)), re(Qm)}.(3.13)

If |λ| > re(Cϕ), then λ ∈ σ(Cϕ) if and only if λ ∈ Λ ∪ σ(Qm).
If |λ| > re(ϕ′(z0)), then λ ∈ σe(Cϕ) if and only if λ ∈ σe(Qm).

Proof. We take the S of (2.1) to be the Cϕ of (3.5). Then the inclusion
(3.12) follows from Lemma 3.2 and the inclusion (2.2) of Lemma 2.2. Since
re(Ckk) ≤ re(C11) = re(ϕ′(z0)) for 2 ≤ k ≤ m − 1, the set Ω of Lemma
2.3 includes all λ ∈ C such that |λ| > re(ϕ′(z0)). Further, any point λ0 ∈
σe(ϕ′(z0)) satisfying |λ0| = re(ϕ′(z0)) belongs to ∂Ω, hence by Lemma 2.3
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to σe(Cϕ). By (2.5), σe(Cϕ) ∩ Ω = σe(Qm) ∩ Ω. Thus the final assertion of
the theorem holds, and this implies (3.13).

It remains to establish the penultimate assertion of the theorem, and for
this it suffices to show that any λ ∈ Λ satisfying |λ| > re(Cϕ) belongs to
σ(Cϕ).

So suppose λ = λ1 · · ·λk satisfies |λ| > re(Cϕ), and λj ∈ σ(ϕ′(z0)) for
1 ≤ j ≤ k. Then |λj | > re(Cϕ). By (2.4) of Lemma 2.3, λj ∈ σ(Cϕ). Conse-
quently λj is an eigenvalue of Cϕ, and there is a function fj ∈ H∞(BE), fj

not the zero function, such that fj ◦ ϕ = λjfj . Then f = f1 · · · fk satisfies
f ◦ ϕ = λf , so f is a nonzero eigenfunction of Cϕ with eigenvalue λ, and
λ ∈ σ(Cϕ). ¤

We do not know whether it is always the case in Theorem 3.3 that every
λ ∈ Λ is an eigenvalue of Cϕ, nor whether equality holds in (3.12).

4. The Case re(Cϕ) < 1

In this section, we focus on composition operators Cϕ on H∞(BE) for
which re(Cϕ) < 1. By Corollary 2.4 of [9], this occurs if and only if there
are % < 1 and n ≥ 1 such that ϕn(BE) ⊆ %BE . In this case the iterates ϕn

of ϕ converge uniformly on BE to a unique fixed point z0 ∈ BE .
On account of the eigenvalue λ = 1, the spectral radius of Cϕ is r(Cϕ) = 1.

In the presence of an attracting fixed point z0, it is natural to split off the
eigenspace of this eigenvalue and to consider the restriction of Cϕ to the
subspace R1 of functions that vanish at the fixed point. We begin with a
formula for the spectral radius of the restricted operator.

Theorem 4.1. Let E be a Banach space, and let ϕ : BE → BE be an
analytic map such that re(Cϕ) < 1. Let z0 ∈ BE be the fixed point of ϕ, and
let R1 be the subspace of functions in H∞(BE) that vanish at z0. Then the
spectral radius of the restriction of Cϕ to R1 is given by

r(Cϕ|R1) = lim
n→∞ ‖ϕn − z0‖1/n.(4.1)

Further, r(Cϕ|R1) < 1.

Proof. Let ε > 0. If z is near z0 and f ∈ R1, we have

|f(ϕ(z))| ≤ (||f ′(z0)||+ ε||f ||)(||ϕ′(z0)||+ ε)||z − z0||
≤ c||f ||(||ϕ′(z0)||+ ε)||z − z0||.

Since ϕn(z) → z0 uniformly for z ∈ BE , we obtain for large n the estimate

|f(ϕn(z))| ≤ c||f ||(||ϕ′(z0)||+ ε)||ϕn(z)− z0||, z ∈ BE .

Hence for large n we have

||Cn
ϕ|R1 || ≤ c(||ϕ′(z0)||+ ε)||ϕn(z)− z0||.

Taking nth roots and letting n →∞, we see that

r(Cϕ|R1) ≤ lim inf ‖ϕn − z0‖1/n.(4.2)
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For the reverse inequality, let ε > 0 be small again, and choose zn ∈
BE such that ||ϕn(zn) − z0|| > ‖ϕn − z0‖ − ε. Choose g ∈ E∗ such that
||g|| = 1 and |g(ϕn(zn)− z0)| > ‖ϕn− z0‖− ε. Then g− g(z0) ∈ R1 satisfies
||g − g(z0)|| ≤ 1 + ||z0||, and

||Cn
ϕ|R1 || ≥

||Cn
ϕ(g − g(z0))||
||g − g(z0)|| ≥ |g(ϕn(zn))− g(z0)|

1 + ||z0|| ≥ ‖ϕn − z0‖ − ε

1 + ||z0|| .

Letting ε → 0, taking nth roots, and letting n →∞, we see that

r(Cϕ|R1) ≥ lim sup ‖ϕn − z0‖1/n.(4.3)

From (4.2) and (4.3), we see that ‖ϕn − z0‖1/n has a limit as n → ∞, and
the limit is given by (4.1).

For the final statement, note that the linear span of the eigenspaces of Cϕ

corresponding to the eigenvalues of unit modulus form a finite dimensional
subalgebra of H∞(BE). Since any finite dimensional uniform algebra is the
linear span of its nonzero minimal idempotents, and since the only nonzero
idempotent in H∞(BE) is the constant function 1, in fact Cϕ has only one
eigenvalue on the unit circle, a simple eigenvalue at λ = 1 with eigenfunction
1. It follows that r(Cϕ|R1) < 1. ¤

Corollary 4.2. Let E be a Banach space, and let ϕ : BE → BE be an
analytic map such that re(Cϕ) < 1. Let z0 ∈ BE be the fixed point of ϕ,
and let R1 be the subspace of functions in H∞(BE) that vanish at z0. Let
m ≥ 1, and let (3.5) be the associated matrix representation of Cϕ. Then

r(Qm) ≤ r(Cϕ|R1)
m.(4.4)

Proof. Applying (3.4) with z replaced by ϕn(z) and n big enough, we obtain
|(Cn

ϕf)(z)| ≤ cm||ϕn(z) − z0||m||f || for f ∈ Rm and z ∈ BE . Consequently
||Cn

ϕ|| ≤ cm||ϕn − z0||m. Since Qn
m is the restriction of Cn

ϕ to Rm, we have
||Qn

m|| ≤ cm||ϕn − z0||m. Taking nth roots and letting n → ∞, we obtain
(4.4). ¤

The relation between the spectral radii and the essential spectral radii of
Cϕ and ϕ′ is given in the following theorem.

Theorem 4.3. Let E be a Banach space, and let ϕ : BE → BE be an
analytic map such that re(Cϕ) < 1. Let z0 ∈ BE be the fixed point of ϕ, and
let R1 be the subspace of functions in H∞(BE) that vanish at z0. Then

r(Cϕ|R1) = r(ϕ′(z0)),(4.5)

and

re(Cϕ) = re(ϕ′(z0)).(4.6)

If |λ| > re(Cϕ), then λ ∈ σ(Cϕ) if and only if λ ∈ Λ, where Λ is as in
Theorem 3.3.
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Proof. By Corollary 4.2, we can choose m so large that r(Qm) is arbitrarily
small. Hence (4.6) follows from (3.13). The final assertion of the theorem
then follows from the corresponding assertion of Theorem 3.3. The identity
(4.5) follows from this and the definition of Λ. ¤

We wish to specialize the results of this section to Riesz operators. For
this, we need the following lemma.

Lemma 4.4. Let E be a Banach space, let ϕ : BE → BE be an analytic
map, and let w ∈ BE. Then ||ϕn − w||1/n has a limit as n → ∞. Either
||ϕn − w||1/n → 1 as n → ∞, or else re(Cϕ) < 1 and w = z0 is the fixed
point of ϕ, in which case the limit is given by Theorem 4.1.

Proof. Since ||ϕn−w|| ≤ 2, lim sup ||ϕn−w||1/n ≤ 1. If re(Cϕ) = 1, then for
each n the image ϕn(BE) is not contained in any proper subball centered at
0, so ||ϕn−w|| is bounded away from 0, and ||ϕn−w||1/n → 1. If re(Cϕ) < 1
and w is not the fixed point of ϕ, then again ||ϕn − w|| is bounded away
from 0, and ||ϕn − w||1/n → 1. ¤

The following is now an immediate consequence of Theorem 4.3 and
Lemma 4.4.

Theorem 4.5. Let E be a Banach space, and let ϕ : BE → BE be an
analytic map. If ϕ has a fixed point z0 ∈ BE such that ϕ′(z0) is a Riesz
operator and

lim
n→∞ ||ϕn − z0||1/n < 1,(4.7)

then Cϕ is a Riesz operator. Conversely, if Cϕ is a Riesz operator, then
ϕ has an attracting fixed point z0 ∈ BE, ϕ′(z0) is a Riesz operator, and
lim ||ϕn−z0||1/n < 1. In this case, the spectrum of Cϕ consists of λ = 0 and
λ = 1, together with all possible products λ = λ1 · · ·λk, where k ≥ 1 and the
λj’s are eigenvalues of ϕ′(z0).

Example 4.6. As a simple example, consider the case where ϕ = T is a
linear operator on E satisfying ||T || < 1. The fixed point of ϕ is at z0 = 0,
and ϕ′(0) = T . The matrix representation of Cϕ is diagonal, and Ckk is
similar to (⊗̂k

sT )∗. In this case, r(Cϕ|R1) = r(T ) and re(Cϕ) = re(T ). By
choosing T to be a quasinilpotent operator that is not power compact, we
obtain in this way a composition operator Cϕ that is not power compact but
whose restriction to the subspace R1 (of codimension 1) is quasinilpotent.

5. Interpolating Sequences in the Unit Ball of Hilbert Space

Let H be a Hilbert space, with unit ball BH . We are interested in se-
quences {zk}∞k=1 in BH that tend exponentially to the boundary of BH in
the sense that there is a constant b < 1 such that

1− ‖zk+1‖
1− ‖zk‖ ≤ b, k ≥ 1.(5.1)
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We will need the following fact.

Theorem 5.1. Let 0 < r < 1 and let 0 < b < 1. Let {zk}∞k=1 be a sequence
in BH such that ‖z1‖ ≥ r and such that (5.1) holds. Then {zk}∞k=1 is an
interpolating sequence, with interpolation constant M that depends only on
b and r.

The proof boils down to a simple application of the work of Berndtsson
[2]. We explain how it comes about.

According to Carleson’s theorem, a necessary and sufficient condition for a
sequence of points zk in the open unit disk D to be an interpolating sequence
for H∞(D) is that there exists δ > 0 such that

∏

j 6=k

ρ(zj , zk) ≥ δ, 1 ≤ k < ∞,(5.2)

where ρ is here the pseudohyperbolic metric ρD of the open unit disk. Fur-
ther, the interpolation constant of the sequence depends only on δ. Berndts-
son was able to extend to several variables a construction for the interpo-
lating functions due to P. Jones and show that the condition (5.2), where
ρ is now the pseudohyperbolic metric of the open unit ball Bn of Cn, is
a sufficient condition for a sequence of points in Bn to be an interpolating
sequence for H∞(Bn). As pointed out in [3], Berndtsson’s interpolation con-
stant depends only on δ and not on the dimension n. By interpolating on
finite subsets of the sequence with uniform bounds and applying a normal
families argument, we can pass to a limit as n → ∞. We then have the
following version of Berndtsson’s theorem, where ρ is now the pseudohyper-
bolic metric on BH .

Theorem 5.2. Let H be a Hilbert space, and let δ > 0. There is a constant
M > 0 such that any sequence {zk} in BH satisfying (5.2) is an interpolating
sequence for H∞(BH) with interpolation constant ≤ M .

The examples given by Berndtsson show that the condition (5.2) is far
from being a necessary condition for interpolation. In fact, the explicit form
of the metric ρ(z, w) given in (3.2) shows that any sequence {zk} satisfying
(5.2) satisfies

∑
(1 − ‖zk‖) < ∞. An interpolating sequence for H∞(BH)

that does not satisfy this condition is given by {zk = wk/2}, where {wk} is
any orthonormal subset of H. It is not known whether the condition (5.2)
in the context of an arbitrary uniform algebra guarantees that the sequence
is interpolating. (See [3].)
Proof of Theorem 5.1. We could estimate the product appearing in (5.2)
directly. A more circuitous route is as follows. First observe that

ρD(‖z‖, ‖w‖) ≤ ρ(z, w), z, w ∈ BH ,(5.3)

where the ρ on the right is the pseudohyperbolic metric of BH . This follows
immediately from the explicit formula (3.2) for the pseudohyperbolic metric
on BH . It can also be seen directly by applying the contraction property of
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the pseudohyperbolic metric to a linear functional L on H satisfying ‖L‖ = 1
and L(z) = ‖z‖, which yields ρD(‖z‖, ‖w‖) ≤ ρD(L(z), L(w)) ≤ ρ(z, w). By
the Hayman-Newman theorem (see [13]), the condition (5.1) in D implies
that the sequence {‖zk‖} is an interpolating sequence for H∞(D). Hence
the condition (5.2) holds for the sequence {‖zk‖} and the pseudohyperbolic
metric ρD, and by (5.3) this implies that the estimate (5.2) holds for the zk’s
in BH . By Theorem 5.2, the sequence {zk} is interpolating for H∞(BH),
and further the interpolation constant depends only on b and the norm of
the first term of the sequence. ¤

6. A Julia-Type Estimate for Hilbert Space

Let ϕ be an analytic self-map of the unit ball BE of a Banach space B such
that ϕ(0) = 0 and ‖ϕ′(0)|| < 1. Consider the analytic function h(λ) defined
on the open unit disk D by h(λ) = L(ϕ(λw))/λ, where w ∈ E and L ∈ E∗
satisfy ‖w‖ = ||L|| = 1. Each such h satisfies |h| ≤ 1 and |h(0)| ≤ ‖ϕ′(0)||.
A normal families argument shows that for each s < 1, there is c < 1 such
that any such h satisfies |h(λ)| ≤ c for |λ| ≤ s. Taking the supremum over
L and setting z = λw, we obtain

‖ϕ(z)‖ ≤ c‖z‖, z ∈ E, ‖z‖ ≤ s.(6.1)

Hence

1− ‖ϕ(z)‖
1− ‖z‖ ≥ 1− c‖z‖

1− ‖z‖ , z ∈ BE , 0 < ‖z‖ < s,(6.2)

and in fact given 0 < r < s < 1, there is ε > 0 such that

1− ‖ϕ(z)‖
1− ‖z‖ ≥ 1 + ε, z ∈ BE , r < ‖z‖ < s.

In the case of the open unit disc D, or the open unit ball in Cn, this estimate
remains valid even as ||z|| → 1. We will need a variant of this Julia-type
estimate for the open unit ball of Hilbert space. For the case of infinite
dimensional Hilbert space, we impose a condition that restricts how z is
permitted to approach the unit sphere ∂BH of H.

We say that a subset W of BH approaches ∂BH compactly if any sequence
{zn} in W such that ||zn|| → 1 has a convergent subsequence. This occurs
if and only if there is a compact subset X of ∂BH such that if U is any open
subset of H containing X, there is δ > 0 such that U contains all points
of W of norm > 1 − δ. In particular, if W is precompact in H, then W
approaches ∂BH compactly.

Theorem 6.1. Let H be a Hilbert space, and let ϕ be an analytic self-map
of BH such that ϕ(0) = 0 and ‖ϕ′(0)‖ < 1. Let δ > 0. Suppose that W is
a subset of BH such that ‖z‖ ≥ δ for z ∈ W , and such that W approaches
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∂BH compactly. Then there is ε > 0 such that

1− ‖ϕ(z)‖
1− ‖z‖ ≥ 1 + ε, z ∈ W.(6.3)

Proof. Suppose that the estimate (6.3) fails. Choose ζn ∈ W such that

1− ‖ϕ(ζn)‖
1− ‖ζn‖ → 1.(6.4)

From (6.2) we see that ‖ζn‖ → 1 and ‖ϕ(ζn)‖ → 1. In view of the
compactness hypothesis, we can pass to a subsequence and assume that
ζn → ζ, where ‖ζ‖ = 1. Using the explicit formula for the pseudohyper-
bolic metric on BH given in (3.2), we see that the contraction property
ρ(ϕ(z), ϕ(w)) ≤ ρ(z, w) is equivalent to

|1− 〈ϕ(z), ϕ(w)〉|2
(1− ||ϕ(z)||2)(1− ||ϕ(w)||2) ≤

|1− 〈z, w〉|2
(1− ||z||2)(1− ||w||2) , z, w ∈ BH .

Substituting w = ζn and reorganizing terms, we obtain

|1− 〈ϕ(z), ϕ(ζn)〉|2
1− ||ϕ(z)||2 ≤ 1− ||ϕ(ζn)||2

1− ||ζn||2
|1− 〈z, ζn〉|2

1− ||z||2 .(6.5)

Since |〈ϕ(z), ϕ(ζn)〉| ≤ ‖ϕ(z)‖, we have 1−‖ϕ(z)‖ ≤ |1−〈ϕ(z), ϕ(ζn)〉|, and

1− ‖ϕ(z)‖
1 + ||ϕ(z)|| =

(1− ‖ϕ(z)‖)2
1− ||ϕ(z)||2 ≤ |1− 〈ϕ(z), ϕ(ζn)〉|2

1− ||ϕ(z)||2 .(6.6)

Combining (6.5) and (6.6), and using (6.4) in passing to the limit, we obtain

1− ‖ϕ(z)‖
1 + ||ϕ(z)|| ≤

|1− 〈z, ζ〉|2
1− ||z||2 , z ∈ BH .

For z = rζ, r < 1, this becomes

1− ‖ϕ(rζ)‖
1 + ||ϕ(rζ)|| ≤

(1− r)2

1− r2
=

1− r

1 + r
.

Since (1 − r)/(1 + r) is a decreasing function of r for 0 < r < 1, we obtain
‖ϕ(rζ)‖ ≥ r = ‖rζ‖. This contradicts (6.1), thereby establishing (6.3). ¤

Assume as before that the analytic self-map ϕ of BH satisfies ϕ(0) = 0 and
||ϕ′(0)|| < 1. A finite or infinite sequence {zk}k≥0 is an iteration sequence if
ϕ(zk) = zk+1 for k ≥ 0. From (6.1) we see that

||z0|| ≥ ||z1|| ≥ ||z2|| ≥ · · · ,

and by induction that ||zk|| ≤ ck||z0|| for k ≥ 1 and for some c < 1. Thus
an infinite iteration sequence converges to 0.

Theorem 6.2. Let H be a Hilbert space, and let ϕ be an analytic self-map of
BH such that ϕ(0) = 0 and ‖ϕ′(0)‖ < 1. Suppose that ϕ(BH) is a relatively
compact subset of H. Let δ > 0. Then there is M ≥ 1 such that any finite
iteration sequence {z0, z1, . . . , zN} satisfying z0 ∈ ϕ(BH) and ||zN || ≥ δ is an
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interpolating sequence for H∞(BH) with interpolation constant not greater
than M .

Proof. Let W = ϕ(BH) ∩ {||z|| > δ}, and let ε be the constant of Theorem
6.1 for δ and for W . The terms {zN , zN−1, . . . , z1, z0} of any such iteration
sequence (note the reversal of order) satisfy (5.1), with b = 1/(1 + ε) and
r = δ. By Theorem 5.1, the sequence is interpolating, with an interpolation
constant M that depends only on ϕ and on δ. ¤

7. A Zheng Theorem for Hilbert Space

We wish to extend the main theorem from [20] to higher dimensions, and
for this we focus on a Hilbert space H of finite or infinite dimensions. In
the infinite dimensional case, it is natural to make some sort of compactness
assumption, and we will assume that ϕ(BH) is a relatively compact subset
of H. If there is k ≥ 1 such that ϕk(BH) is contained in a subball %BH for
some % < 1, then Ck

ϕ is compact, and re(Cϕ) = 0. The following theorem
addresses the alternative case.

Theorem 7.1. Let H be a Hilbert space. Let ϕ be an analytic self-map of
the unit ball BH of H satisfying ϕ(0) = 0 and ‖ϕ′(0)‖ < 1, such that ϕ(BH)
is a relatively compact subset of H. Suppose that for each k ≥ 1, the closure
of ϕk(BH) in H meets the unit sphere ∂BH of H. Then the spectrum of Cϕ

coincides with the closed unit disk, that is, σ(Cϕ) = D. Further, re(Cϕ) = 1.

Proof. Fix m ≥ 1, to be chosen later. Consider the corresponding lower
triangular decomposition of Cϕ given by (3.5).

First observe that the functions in Pk that are bounded in modulus by 1
on BH , are uniformly bounded on 2BH , and consequently are equicontinuous
at each point of the closure of BH . By the Ascoli theorem, the functions
then form a compact set of continuous functions on any subset of BH that
is relatively compact in H. Since ϕ(BE) is relatively compact in H, the
functions f ◦ ϕ, f in the unit ball of Pk, form a compact set of functions
in H∞(BH). Hence the operator Ckk is a compact operator for any k ≥ 1.
By Corollary 2.4, it suffices then to show that σ(Qm) = D, where Qm is the
restriction of Cϕ to Rm.

So fix λ such that 0 < |λ| < 1. We must show that λ ∈ σ(Qm).
Fix δ, 0 < δ < 1. We will consider iteration sequences {zk}∞k=0 such that

z0 ∈ ϕ(BH) and ||z0|| > δ. In view of (6.1), the norms of the elements of
any such iteration sequence decrease to 0. We define N = N(z0) to be the
largest integer such that ‖zN‖ > δ. The hypothesis guarantees that for all
k ≥ 1, ϕk(BH) is not contained in the ball {||z|| ≤ δ}. Consequently we can
find z0 for which N(z0) is arbitrarily large.

Choose c < 1 such that

‖ϕ(z)‖ ≤ c‖z‖, z ∈ H, ‖z‖ ≤
√

δ.
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We can assume that c >
√

δ. By considering separately the cases ‖zN‖ ≤
√

δ

and ‖zN‖ >
√

δ, we see then also that ‖zN+1‖ ≤ c‖zN‖. Since ‖zn+1‖ ≤
c‖zn‖ for n > N + 1, we obtain by induction that

‖zN+k‖ ≤ ck‖zN‖, k ≥ 0.

Suppose now that {zk}∞k=0 is an iteration sequence. We define the linear
functional L on Rm by

L(f) =
∞∑

k=0

f(zk)
λk+1

, f ∈ Rm.

For f ∈ Rm, we have that |f(z)| ≤ ||f ||∞||z||m for all z ∈ BH . Hence
∞∑

k=N+1

|f(zk)|
|λ|k+1

≤
∞∑

k=N+1

‖f‖ ‖zk‖m

|λ|k+1
≤ ‖f‖‖zN‖m

|λ|N+1

∞∑

k=1

ckm

|λ|k .

Thus if we choose m so large that cm < |λ|, the series defining L converges,
and we obtain an estimate for the tail of the series,

∣∣∣∣
∞∑

k=N+1

f(zk)
λk+1

∣∣∣∣ ≤ ‖f‖‖zN‖m

|λ|N+1

cm

|λ| − cm
, f ∈ Rm.(7.1)

Now choose an m-homogeneous polynomial P satisfying ‖P‖ = 1 and
|P (zN )| = ‖zN‖m. By Theorem 6.2, there is g ∈ H∞(BH) such that ||g|| ≤
M , g(zk) = 0 for 0 ≤ k < N , and g(zN ) = 1. Then Pg ∈ Rm satisfies
‖Pg‖ ≤ M , and using the estimate in (7.1) for f = Pg, we obtain

|L(Pg)| ≥
∣∣∣∣
(Pg)(zN )

λN+1

∣∣∣∣−
∣∣∣∣

∞∑

k=N+1

(Pg)(zk)
λk+1

∣∣∣∣ ≥
||zN ||m
|λ|N+1

− ||zN ||m
|λ|N+1

Mcm

|λ| − cm
.

We choose m so that in addition to cm < |λ| we have
Mcm

|λ| − cm
<

1
2
,

and then

M‖L‖ ≥ |L(Pg)| ≥ ‖zN‖m

2|λ|N+1
≥ 1

2 · 4m|λ|N+1
.(7.2)

Next observe that for f ∈ Rm,

((λI −Q∗
m)L)(f) = λL(f)− L(f ◦ ϕ) = λ

∞∑

k=0

f(zk)
λk+1

−
∞∑

k=0

f(zk+1)
λk+1

= f(z0).

Hence

‖(λI −Q∗
m)L‖ ≤ 1.(7.3)

We can form iteration sequences for which N is arbitrarily large, hence by
(7.2) for which ‖L‖ is arbitrarily large. In view of (7.3), we see then that
λI−Q∗

m is not bounded below. Consequently λI−Q∗
m is not invertible, and

neither then is λI −Qm, so that λ ∈ σ(Qm). ¤
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We do not know whether σe(Cϕ) is the full closed unit disk, even in the
case treated by Zheng, where H is one-dimensional.

Example 7.2. There is an abundance of analytic maps satisfying the hy-
potheses of Theorem 7.1. Here is one family of such maps, defined on the
infinite dimensional Hilbert space `2. For each j ≥ 1 and k ≥ 2, define a
self-map ϕ of the unit ball of `2 by

ϕ(x) = (xk
1, . . . , x

k
j , x

k
j+1,

xk
j+2

2
,
xk

j+3

3
,
xk

j+4

4
, . . . ), x ∈ B`2 .

Evidently ϕ(0) = 0, ϕ′(0) = 0, and ϕ(B`2) is relatively compact in `2. Since
‖ϕn‖ = 1 for n ≥ 1, the iterates ϕn do not converge uniformly to 0, and
Theorem 7.1 shows that σ(Cϕ) = D.
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