COMPOSITION OPERATORS ON UNIFORM ALGEBRAS, ESSENTIAL
NORMS, AND HYPERBOLICALLY BOUNDED SETS

P. GALINDO !, T.W. GAMELIN, AND M. LINDSTROM 2

ABSTRACT. Let A be a uniform algebra, and let ¢ be a self-map of the spectrum M4 of
A that induces a composition operator Cy on A. The object of this paper is to relate
the notion of “hyperbolic boundedness” introduced in [GGL] to the essential spectrum
of Cy. It is shown that the essential spectral radius of Cy is strictly less than 1 if and
only if the image of M4 under some iterate ¢™ of ¢ is hyperbolically bounded. The set
of composition operators is partitioned into “hyperbolic vicinities” that are clopen with
respect to the essential operator norm. This partition is related to the analogous partition
with respect to the uniform operator norm.

Some attention has been paid over the years to homomorphisms of uniform algebras,
particularly to compact homomorphisms. A unital homomorphism of a uniform algebra A
can be realized as a composition operator Cy given by f — f o ¢, where ¢ is a self-map
of the spectrum M, of A. H. Kamowitz [Ka] obtained in 1980 a fundamental theorem
on compact composition operators asserting the existence of an attracting fixed point for
the underlying map ¢ of the spectrum. In his path-breaking 1996 thesis written at Karl-
sruhe under R. Mortini, U. Klein exploited systematically the contractive properties of the
pseudohyperbolic metric on the spectrum to shed light on the Kamowitz theorem and to
obtain substantial generalizations. (For an expository account of Klein’s thesis, see [Gad].)
In order to clarify the natural boundaries of the fixed point theorem along the lines laid
out by Klein, we introduced and explored in [GGL] a notion of “hyperbolic boundedness”.
In this paper we continue the work in [GGL| by relating hyperbolic boundedness to the
essential spectra of composition operators and to the essential norm of the difference of
composition operators.

Our immediate motivation stems from the thesis of L. Zheng [Zh], in which he shows that
for an analytic self-map ¢ of D, the composition operator Cy on H*°(D) has essential spectral
radius either 0 or 1. Under supplementary conditions (see later) the essential spectrum fills
out the closed unit disk . We extend Zheng’s results to the setting of homomorphisms
between uniform algebras. P. Gorkin and R. Mortini [GM] have also extended Zheng’s
work, and our Lemma 2.1 and Corollary 2.2 below are closely related to their Theorems 8
and 9. For related work, see also [HIZ].
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The paper is organized as follows. In Section 2 we characterize composition operators
with essential spectral radius 1. In Section 3 we introduce norm vicinities and hyperbolic
vicinities of composition operators, and we give conditions for operators to belong to the
same hyperbolic vicinity. In Section 4 we show that two composition operators belong to
the same hyperbolic vicinity if and only if their restrictions to some subalgebra of finite
codimension belong to the same norm vicinity. In Section 5 we show that hyperbolic
vicinities are open with respect to the essential operator norm. In Section 6 we determine
the hyperbolic vicinity of the identity operator and we show that the identity operator is
essentially isolated in the set of composition operators on an algebra whose spectrum has
no isolated points.

1. BACKGROUND

Let A be a uniform algebra, with spectrum M,. We regard A as an algebra of continuous
functions on My, so that A is a closed unital subalgebra of C'(M4). The pseudohyperbolic
metric pa(z,y) on the spectrum M, is defined by

(1) pa(z,y) = sup{p(f(x), f(¥)): f € A[lfIl <1}, @,y € Ma,

where p is the pseudohyperbolic metric on the open unit disk I in the complex plane.
The pseudohyperbolic metric on M, is expressed in terms of the norm of the evaluation
functional at  on the null-space of the evaluation functional at y by

2)  palz,y) = llzly-@ll = sup{l[f(@)]: fe Allfl[<1,fly) =0}, =,y € Ma.
Evidently pa(z,y) < 1. The pseudohyperbolic metric on M4 satisfies Kénig’s inequality

pA(-T, U’) + pA(U, y)
3 pal:y) < 7 + pal(z,u)pa(u,y)’

,From Konig’s inequality it is easy to see that any two open pseudohyperbolic balls in M4
of radius 1 either are disjoint or coincide. These open balls of radius 1 are the Gleason
parts of A. (See Chapter VI of [Gal].) It is easy to check that

le—3ll _
2 <
so that convergence in the pseudohyperbolic metric of M, is tantamount to convergence

in the norm of A*. The precise relationship between the pseudohyperbolic metric and the
norm in A* is given by

2 2 —
@ o=yl = s (VI aEnR) . paley) =

where 2,y € My. (See e.g. [Kd]).

T, U,y € My.

pA(xvy) S H:E—yH, JU,QEMA,

Afjz — yll
4+ [l —yl>

For general background on uniform algebras we refer to [Gal].

The bidual A** of A is also a uniform algebra. For a description of the bidual of A,
see [Ga3|. The evaluation functionals at points of M, extend uniquely to be weak-star
continuous multiplicative functionals on A**, so we can regard M, as a subset of the
spectrum of A** and we can regard A as a subalgebra of A**. The restrictions of the
functions in A** to M4 are the pointwise limits of bounded nets in A.
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Following [GGL], we define a subset E of M4 to be hyperbolically bounded if it is contained
in a finite union of pseudohyperbolic balls whose radii are strictly less than 1. Each such
ball is contained in a single Gleason part, so that a hyperbolically bounded subset of M4
meets only a finite number of Gleason parts of M 4.

We will make use of the following result, which is Theorem 2.5 in [GGL].

Theorem 1.1. Let A be a uniform algebra, with spectrum M, and bidual A**. Let F be a
subset of M4 that is not hyperbolically bounded. Then for each € > 0, there are a sequence
of points {x;}32, in E and a sequence of functions {Fy}72, in A** such that Fi(z;) =0 for
J#k, Fe(zg) =1, and D0 |Fx| <1+¢€ on M.

Note that the sequence {Fy} in the theorem converges weakly in A** to 0. In fact, for a
sequence of functions { f;} in a subspace of C(X), the condition )" |fx(z)| < M < oo holds
if and only if the correspondence e; — f; extends to a continuous linear operator from the
sequence space ¢y into the subspace. (See e.g. [Da].) Since the standard basis {e;} for
co tends weakly to 0, so does {fx}. (This can also be seen by representing a continuous
linear functional on C'(X) by a measure and applying the Lebesgue dominated convergence
theorem.)

A composition operator from a uniform algebra A to a uniform algebra B is an operator
of the form Cy : f +— fo ¢, where ¢ : Mp — M, is continuous. The composition operators
from A to B are precisely the unital homomorphisms from A to B. Composition operators
satisfy ||Cys|| =1 = Cy(1). If Cy is a composition operator from A to A, then C§ = Cyn,
where ¢ = ¢ o --- 0 ¢ is the nth iterate of ¢.

2. ESSENTIAL SPECTRAL RADIUS OF COMPOSITION OPERATORS

We denote the essential norm of an operator T from A to B by ||T'||.. The essential norm
is the distance from 7" to the compact operators from A to B,

||T||e = inf{||T" + K|| : K a compact operator}.

Theorem 1.1 leads to a brief proof of the following lemma. (See Theorems 8 and 9 of P.
Gorkin and R. Mortini [GM]. See also [HIZ].)

Lemma 2.1. Let Cy and Cy, be composition operators from A to B. If {y,} is a sequence
in Mp such that {¢(y;)} is not hyperbolically bounded in M,, then

|1Cs — Cylle > liminf pa(d(y;), ¥(y;))-

Proof. Set liminf pa(¢(y;),%¥(y;)) = L. Let K be a compact operator from A to B, and
let € > 0. Passing to a subsequence and applying Theorem 1.1 to {¢(y;)}, we can find a
sequence of functions {Fj}32, in A** such that Fi(¢(y,;)) = 0 for j # k, Fi(é(yk)) = 1,
and 0 [Fy| < 1+ ¢ on My«. Take g, € A such that ||gx|| < 1, ge(¥(yx)) = 0, and
gk(d(yx)) — L. Since Y. |gpFr| < 1+ ¢, g Fr — 0 weakly in A**. As K™ is also compact,
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||K**(grF%)|| — 0. Consequently we obtain
(1+6)/[Cy — Cy + K| > Timsup||(Cyr — Cf + K**)(gxF) |
= limsup [|(C3" — C;")(gxFx)|| > limsup [(CF (g F%)) (yx) — (CF (96 F%)) (yr)|
= limsup [(g9x Fx) (9 (vk)) — (9xF%) (¥ (we))| = lim |ge(d(ys))| = L.
It follows that ||Cy — Cylle > L, as required. O

Corollary 2.2. Let Cy be a composition operator from a uniform algebra A to a uniform
algebra B. If $(Mp) is not a hyperbolically bounded subset of My, then ||Cy||. = 1.

Proof. Since ||Cy|| < 1, also ||Cyg||e < 1. For the reverse inequality, take ) as any constant
mapping with value, say, a € My. Since ¢(Mp) is not a hyperbolically bounded, there is
sequence {¢(y;)} such that lim p4(¢(y;),a) = 1. Clearly, Cy is a finite rank operator, so
[Colle = ||Cp — Cylle > 1 by the lemma above. O

We denote the essential spectrum of an operator 7" on A by o.(T). Thus o.(T) is the
spectrum of the coset of T in the quotient Banach algebra of operators on A modulo
compact operators. It is a compact subset of the complex plane, which is nonempty except
in the trivial case that A is finite dimensional. We denote by r.(7T") the essential spectral
radius of T, that is, the supremum of |A| for A € 0.(T). By the spectral radius formula,

re(T) = lim || T |5/
Corollary 2.2 allows us to expand upon Theorem 3.3 of [GGL)].

Theorem 2.3. Let Cy be a unital homomorphism of the uniform algebra A. The following
statements are equivalent.

(i) There is a decomposition of My into disjoint clopen subsets Ei, ..., E, such that the
iterates of ¢ converge uniformly on each E; in the pseudohyperbolic metric to an attracting
cycle in E; for ¢.

(1i) There is n > 1 such that the nth iterate ¢™(Ma) of M4 under ¢ is a hyperbolically
bounded subset of M 4.

(iit) 7.(Cy) < 1, that is, the essential spectrum of Cy does not contain any points of the
unit circle.

Proof. The equivalence of (i) and (ii) is established in Theorem 3.3 of [GGL]. If (ii) fails,
then the preceding lemma shows that |[CZ||c = 1 for all n > 1. By the spectral radius
formula, r.(C,) = 1, and (iii) also fails. Thus (iii) implies (ii).

Suppose that (i) and (ii) hold. Replacing ¢ by some iterate ¢”, we can assume that the
attracting cycles in (i) are attracting fixed points. Let Ay be the subspace of functions in A
that vanish at these fixed points. Then A, is an invariant subspace for Cy. According to the
proof of Theorem 3.3 in [GGL], there are n > 1 and ¢ < 1 such that ¢ is a pseudohyperbolic
contraction with contraction constant ¢ on each of the sets ¢"(E;). If f € Ay, z € E}, and
y = ¢"(2), then [(Cg"f)(2)| = [f(¢""(2))| = [F(¢"W)] < pa(¢*(y). 25) < c*paly, z;) <
c®. Thus the norm of the restriction of C’g““ to Ag is bounded by c*. Taking (n + k)th
roots and sending k to oo, we find that the spectral radius of the restriction of Cy to Ay
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is at most c¢. Since Aj has finite codimension in A, the essential spectral radius of Cy is at
most ¢, and (iii) holds. O

A subset E of the spectrum Mpg of a uniform algebra B is a norming set if

IFIl = sup{|f(2)| : € E},  feB.

According to Lemma 3.8 of [GGLY], if ¢ : Mg — My corresponds to a composition operator
Cs : A — B, then ¢(Mp) is hyperbolically bounded in My as soon as ¢(E) is hyperbolically
bounded in M 4. This leads to the following corollary.

Corollary 2.4. Let Bx be the open unit ball of a Banach space X, and let A be a uniformly
closed subalgebra of H*(Bx) that contains the functions in X*. Let ¢ : Bx — Bx be an
analytic map that induces a composition operator on A. Then r.(Cy) < 1 if and only if
there are r < 1 and an integer n > 1 such that ¢"(Bx) C rBx.

Proof. Since By is a norming set for A, Lemma 3.8 of [GGL] shows that ¢" (M) is hyper-
bolically bounded if and only if ¢™(By) is hyperbolically bounded. Since p4(0,z) = ||z||
for € By, this occurs if and only if ¢"(By) is contained in a ball rBy for some r < 1.
Thus the corollary follows from the equivalence of (ii) and (iii) in Theorem 2.3. O

If the Banach space X is finite dimensional, then either r.(Cy;) = 1 or r.(Cy) = 0.
Indeed, if 7.(Cy) < 1, then for n large, ¢"(Bx) C rBx, and consequently C7 is a compact
operator. It follows that 7.(Cy) = 0, and 0.(Cy) = {0}. The same conclusion holds if A is a
logmodular algebra, or more generally a URM-algebra (an algebra for which every x € M4
has a unique representing measure on the Shilov boundary; see [GL]).

If the Banach space X is infinite dimensional, it can occur that 0 < 7.(Cy) < 1. Indeed,
let A be a complex number, 0 < |A| < 1, and define ¢(z) = Az for x € Bx. The space
P* of homogeneous polynomials on X of degree k is an eigenspace for Cj; with eigenvalue
Ak, The eigenspace P is one-dimensional, consisting only of the constant functions, while
P! = X*. Since the eigenspaces P* are infinite dimensional for k£ > 1, the essential spectrum
of Cy includes ¥ for k > 1. Let us see that o(Cy) = {0,1, A\, \%,---}. First, note that
{\:k=0,1...,} are the only eigenvalues of Cy4. For u ¢ {0,1, A\, A%, ---} choose n € N
such that |A|" < |u| and let us check that the one to one map u — Cy, is an onto map.
Consider the natural direct sum decomposition

H®Bx) = P°PeP'a---0P"®Q,

where |f(z)| < [|f||||z]||"™! for f € Q and x € Bx. For any f € @, the series g :=
w0 (fo @) " is uniformly convergent in H*°(Bx) and (u— Cy)(g) = f. Moreover the
subspace P'@P'@- - -@P™ is contained in the range of the map p—Cj which thus turns to be
an onto mapping. Since 1 ¢ 0,(Cj), we further obtain o.(Cy) = o(Cy)\{1} = {0, \, A2, - - },
and 7.(Cy) = |A|.

Consider now the one-dimensional case of the open unit disk D and a composition oper-
ator Cy on H*(D) arising from an analytic map ¢ : D — D. As mentioned before, Zheng
[Zh] proved that either 7.(Cy) = 0 or r.(Cy) = 1, depending on whether there is n > 1 such
that ¢™(D) is a relatively compact subset of D. Further, Zheng showed that if r.(Cy) = 1,
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and if ¢ has an attracting fixed point in D, then the spectrum of Cj fills out the closed unit
disk D. It would be of interest to determine in a general setting exactly when o,(C},) = D.

3. HYPERBOLIC VICINITIES OF COMPOSITION OPERATORS

We consider two composition operators Cy and Cy from the uniform algebra A to a
uniform algebra B. In analogy with the usual definition of Gleason parts, we say that Cy
and Cy, are in the same norm vicinity if ||Cy — Cyl|| < 2, that is, if

sup  |f(¢(y)) = F(¥(y)] = sup [lo(y) =¥yl < 2.

feball A, yeMp yEMp

In view of the relation (4) between the norm and the pseudohyperbolic metric, this occurs
if and only if there is r < 1 such that

pa(o(y),v(y) <r, ye€ Msp.

As in the case of Gleason parts, being in the same vicinity is an equivalence relation. The
norm vicinities form a partition of the set of composition operators from A to B into
pairwise disjoint sets that are clopen with respect to the uniform operator norm.

We would like to develop a notion of vicinity that is adapted to the essential operator
norm rather than the uniform operator norm. Towards this goal, we make the following
definition.

Definition: Composition operators Cy and Cy from A to B are in the same hyperbolic
wicinity if there are a norming set Y for B, a subset E of Y, and an r < 1 such that

(i) pa(o(y), ¥(y)) < rforally € E, and

(ii) ¢(Y'\E) and ¢(Y'\E) are hyperbolically bounded in My.

Each norm vicinity is contained in a hyperbolic vicinity. We aim to show eventually
that the hyperbolic vicinities partition the set of composition operators from A to B into
pairwise disjoint sets that are clopen with respect to the essential operator norm. We begin
with some lemmas.

Lemma 3.1. Let xg € M4 and let r < 1. The pseudohyperbolic closed ball B, = {x €
My : pa(z,x0) <7} is a closed A-convex subset of Ma. Further, if f, € A satisfy ||fal] < 1
and fn(zo) = 1, then f, — 1 uniformly on B,.

Proof. By (2), B, is the set of x € M4 such that [f(z)| < r for all f € A satisfying
[|fl] < 1 and f(zq) = 0. The first statement follows immediately from this description.
The second statement follows from the definition (1) of p4 and the fact that if the centers
of pseudohyperbolic disks of radius r in D tend to 1, then the disks tend to 1. O

Lemma 3.2. If the subset E of M4 is hyperbolically bounded, then the A-convex hull E of
E z's hyperbolically bounded. Further, if P, ..., P, are distinct Gleason parts, and sz =
* E; where E; is a hyperbolically bounded subset of P;, then E C P;, and E = U E
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Proof. Suppose E is contained in a union of closed pse/u\dohyperbolic balls of the form
B; = {pa(z,z;) < r;}, where z; € P;. By Lemma 3.1, E; C B;. Since z; and z, are in
different Gleason parts, there are functions f, € A satisfying ||f,|| < 1, fn(z1) — 1, and
fn(z2) = —1. By Lemma 3.1, f, — 1 uniformly on Bj, and also f, — —1 uniformly on
By. Thus (1 + f,)/2 converges uniformly to 1 on By and to 0 on By. By taking products
of such functions constructed for the various z;’s, we see that the function that is 1 on By,
and 0 on the other B;’s can be approximated uniformly on UB; by functions in A. Thus

the spectrum E= JE’] of the uniform closure of the restriction of A to UE; coincides with
UE;. O

Lemma 3.3. Let Cy and Cy, be composition operators from A to B, and let E be a subset
of Mp. If pa(6(y),¥(y)) < r fory € E, then pa(d(y),(y)) <r fory € E.

Proof. In view of the relation (4) between the norm and the pseudohyperbolic metric,
it suffices to show that if ||¢(y) — ¥(y)|| < ¢ for y € E, then ||¢(y) — ¥(y)|| < ¢ for

y € E. So suppose that [[¢(y) — ¢(y)l| < ¢ for y € E. Then |f(6(y)) ~ f((y))| =
(Cof)(y) — (Cypf)(y)| < cfor f €ballAand y € E. For each f, this estimate persists for

A~

y € E. Consequently ||¢(y) — ¢ (y)|| < ¢ for y € E. O

Theorem 3.4. Let Cy and Cy be composition operators from A to B that belong to the
same hyperbolic vicinity, and let E be the set of y € Mp such that ¢(y) and ¥ (y) belong
to the same Gleason part of M4. Then E is a clopen subset of Mg, and there is r < 1
such that pa(o(y),v(y)) < r fory € E. Further, Mp is the disjoint union of E and a
finite number of disjoint clopen sets E, such that for each index o, ¢(E,) and ¢(E,) are
hyperbolically bounded subsets of different Gleason parts.

Proof. Let Y and FE be as in the definition of hyperbolic vicinity. Adjusting r if necessary,
we can adjoin to F any subset S of Mp such that ¢(S) and ¢(S) are hyperbolically bounded
subsets of the same part. Making a finite number of such adjunctions and adjustments, we
can assume that E consists of all y € Y such that ¢(y) and ¢(y) belong to the same part.

Now ¢(Y\E) U (Y \E) is contained in a finite union of Gleason parts Py,... , P, of
My. For j # k, let Ej; be the set of y € Y such that ¢(y) € P; and 9(y) € P;. (Some
of the Ej;’s may be empty.) Then Y is the disjoint union of E and the E;;’s. By Lemma

—_— —

3.2, ¢(Ej;) and 9(Ej;) are hyperbolically bounded subsets of P; and P respectively. By

Lemma 3.3, pa(6(y),%(y)) < r for y € E. Thus E and the Ej\k,s are disjoint subsets of
Mpg.

Let F(z,w) = (1 4+ 2)(1 — w)/4. Then F(1,-1) = 1, and |F(z,w)| < 1 for |2| < 1,
lw| <1, (2,w) # (1,=1). There is a constant ¢ = ¢(r) < 1 such that if {,£ € D satisfy
p(¢, &) < r, then |F((,€)| < c¢. Thus if f € A satisfies ||f|| < 1, and if y € E, then
|F(f(o(y)), f(¥(y)))| < c. For any two pseudohyperbolic balls of radii < 1 in different
Gleason parts, we can find a sequence of functions in the open unit ball of A that converges
uniformly to 1 on one of the pseudohyperbolic balls and to —1 (or to 0) on the other.
By combining such sequences, as in the proof of Lemma 3.2, we can find a sequence of
functions {f,} in A such that ||f,|| < 1, f, — 1 uniformly on ¢(E1s) C Py, f, — —1
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uniformly on ¢(Ey2) C P, and f, — 0 uniformly on subballs of P; for j > 3. Set
gn = F(fno ¢, fnot) € B. Then ||g,|| <1, go — 1 uniformly on Ejy, g, — 0 uniformly
on Ejsi, g, — 1/4 uniformly on the other Ej;’s, and |g,| < c on E. If {k,} is a sequence of
integers that tends very slowly to +o0, then g*» still converges to 1 uniformly on Ejo, while
gf» — 0 uniformly on the other Ej;’s and on E. In this way we see that the characteristic
function of each Ej;, regarded as a function on Y, belongs to B. Since Y is a norming set

for B, Mg is then the disjoint union of E and the l/?j\k’s. O

The relation of belonging to the same hyperbolic vicinity is clearly reflexive and symmet-
ric. This theorem shows that we may take as a norming set in the definition of hyperbolic
vicinity the whole spectrum Mpg and therefore, transitivity follows easily from it and Konig’s
inequality (3).

If Mp is connected, then only one of the sets among E and the E,’s can be nonempty,
and we obtain the following.

Corollary 3.5. Let Cy and Cy be composition operators from A to B that belong to the
same hyperbolic vicinity. Suppose that Mp is connected. Then either Cy and Cy belong
to the same norm vicinity, or ¢(Mpg) and »(Mp) are hyperbolically bounded subsets of two
different Gleason parts of M 4.

Thus if Mg is connected, each hyperbolic vicinity is a norm vicinity, with one exception.
The exception is the grand hyperbolic vicinity consisting of all composition operators Cy
from A to B such that ¢(Mp) is hyperbolically bounded. If B = H*(D), or more generally if
B is a URM-algebra with connected spectrum, then this grand hyperbolic vicinity coincides
with the set of compact composition operators on B.

Corollary 3.6. Suppose ¢ and 1 and analytic self-maps of some connected analytic set
V. Then the induced composition operators Cy and Cy on H*®(V) are in the same norm
vicinity as soon as they are in the same hyperbolic vicinity.

Proof. Since V is connected, the spectrum of H*>°(V) is connected, and Corollary 3.5 applies.
In this case, ¢(V') and (V) are in the same Gleason part, namely that of V', so the second
alternative of the corollary cannot occur. O

4. SUBALGEBRAS OF FINITE CODIMENSION

We wish to consider the restrictions of homomorphisms from A to B to subalgebras Aj
of A of finite (linear) codimension. By [Ga2|, any such subalgebra can be embedded in
a descending chain of subalgebras, A = Ay D A; D Ay D --- D A,, = A,, where each
Ay, has codimension 1 in Ay ;. Thus we need analyze only the case of a subalgebra A; of
codimension 1 in A.

So we assume that A, is a subalgebra of A of codimension 1. According to [Ga2], there
are two cases that can occur: either A, is obtained from A by identifying two points of
M4, or A, is the null space of a point derivation at some point of M 4. In the former case,
the spectrum M4, is obtained from M, by identifying the two points identified by A. In
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the latter case, M4, coincides with My. For x € My, we denote by Z the corresponding
point of M,,, that is, the restriction of z to A;. For a subset S of M,, we denote by
S ={z : z € S} the corresponding quotient subset of My, .

We wish to relate the pseudohyperbolic metrics on M4 and My,. We denote by p, the
pseudohyperbolic metric p4, on the spectrum My, of A,. Since A; C A, we have

(5) ps(iag) S pA(xvy)v z,Y € MA-

We need estimates in the other direction. To compare p; and p,4, we divide the discussion
into several cases.

Case 1. Suppose A, consists of the functions f € A such that f(z¢) = f(x1), where z, and
x1 belong to distinct Gleason parts Py and Py of M. Thus Ty = T7. Let x € M4\ (PyUPy),
and let y € M. We can find f € A such that ||f|| < 1, f(zo) = f(z1) = f(y) =0, and
f(z) = pa(z,y). Since f € A;, we obtain ps(Z,y) > pa(z,y). Thus

(6) ps(i‘ag) = pA(xay)

for x,y € M4 providing x ¢ Py U P;. A similar argument shows that the identity (6) holds
if both z and y belong to Py, or if they both belong to P;.

Suppose x € Py and y € P;. Choose fy € A such that ||fo|| < 1, fo(zo) =0, and fo(x) ~
pa(xg,x). Since y is in a different part from z, we can arrange that fo(y) ~ 1. Choose f; € A
such that ||fi|| <1, fi(z1) =0, fi(y) =~ —pa(x1,y), and fi(z) ~ 1. Then f = fof; € A;,
Ifll <1, f(z) = pa(zo,z), and f(y) = —pa(z1,y). The pseudohyperbolic distance from
f(z) to f(y) in D is then close to (pa(xo,x) + pa(z1,y))/(1 + pa(zo,z)pa(z1,y)), and we
obtain py(Z,5) > (p4(30,) + pa(@1,4))/(1+ pa(50,2)pal(21, ). Since zy and z are in the
same Gleason part, pa(zo, x) = ps(To, ), and also pa(x1,y) = ps(Z71,y)- Thus from Konig’s
inequality (3), applied to ps, we obtain equality, that is,

v palmo, ) + palzr,y)
(M) ps(7,9) = L+ pa(zo, z)pal(r1,y)

There is a similar identity if x € P; and y € Py, and in every other case (6) holds. This
determines completely the pseudohyperbolic metric p; in terms of p4. In particular, we see
that the Gleason parts of A, are the same as the Gleason parts of A, except that the two
Gleason parts Py and P, of A are joined at Ty = 77 to form a single part of A;. Note that
the identities connecting p4 and p, show that a subset of M, is hyperbolically bounded if
and only if the corresponding quotient subset of My, is hyperbolically bounded.

e Py, ye b.

Case 2. Suppose A; consists of the functions f € A such that f(z) = f(x1), where
and x; belong to the same Gleason part P of M. As before, the identity (6) holds unless
x and y both belong to P. Thus the Gleason parts of A, are the same as those of A.

Suppose x € P. Choose f € A, such that ||f|| < 1, f(ZTg) = 0, and f(Z) = ps(Tg, T).
Since £(z0) = 0, |f(x)] < pa(zo, z), and since f(z) = 0, | /()| < pa(e1, ). Hence

(8) ps(To, Z) < min(pa(xo,x), palzi,x)), z e P.

For a lower bound, choose fy € A such that ||fy|| < 1, fo(zo) = 0, and fo(x) = pa(zo, x),
and similarly choose f; € A such that ||fi|| < 1, fi(z1) = 0, and fi(z) =~ pa(z1,z). Then
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f = fofi € Ay, f(@) =0, and f(Z) ~ pa(0,2)pa(a1, ). Tt follows that

(9) min(pA(anm)QapA(xlax)Q) < pA(370a37),0A(371a33) < ps(m_Oa"z'): z € P.

As before, these estimates show that a subset of M, is hyperbolically bounded if and only
if the corresponding quotient subset of M4, is hyperbolically bounded.

Continuing with fy and f;, suppose that y € P, and choose g € A such that ||g|| < 1,
g(y) =0, and g(z) =~ pa(z,y). Then h = gfifo € A, ||h]| < 1, h(y) = 0, and h(z) =~
pa(Zo,)pa(z1,7)pa(r,y). Consequently

(10) pA(:EOax)pA(xlax)pA(xay) < ps(jag)a z,y € P.

This shows that as = tends to oo in the part P, the metrics pa(z,y) and ps(Z,7) are close
to each other.

Case 3. Suppose that A, is the null space of a point derivation at some point o € My,
and let P denote the Gleason part containing x3. Then A, includes all products of the form
fg, where f, g € A satisfy f(z9) = g(zo) = 0. Case 3 may be regarded as a limiting case
of case 2 as ©1 — x(. If we proceed in analogy with case 2, with xq = x1, we see that the
Gleason parts of A, are the same as those of A, and the identity (6) holds unless both z
and y belong to P. The analogs of the estimates (9) and (10) , obtained in the same way,
are

(11) pa(zo,2)” < ps(T0,2), T EDP

(12) pA(anx)QpA(xay) S ps(iag)a T,y € P.

Again the estimates show that a subset of My is hyperbolically bounded if and only if the
corresponding quotient subset of M4, is hyperbolically bounded, and the metrics p4(z, y)
and ps(Z,7y) are close to each other as z tends to co in the part P.

We summarize some of these results in the following theorem.

Theorem 4.1. Let A, be a unital subalgebra of finite codimension in the uniform algebra
A. Then the spectrum M4, is obtained from M, by identifying a finite number of pairs of
points. A subset E of My is hyperbolically bounded in M4 if and only if the corresponding
quotient subset of My, is hyperbolically bounded in My, .

Proof. This follows from the corresponding results in each of the three cases treated above
and the reduction of the general case to the case of codimension 1. O

Suppose now that Cy and Cy, are unital homomorphisms from the uniform algebra A to a
uniform algebra B, corresponding to maps ¢, : Mg — M 4. Let A, be a unital subalgebra
of A of finite codimension. The restrictions of Cy and Cy to A, are unital homomorphisms
from A, to B, corresponding to maps ¢, : Mp — M, obtained respectively by following
¢ and 1 by the quotient map of M4 onto M4,, which simply identifies the (finite number
of) pairs of points in M4 that are identified by As.

Theorem 4.2. Let A and B be uniform algebras, and let Ay be a unital subalgebra of A
of finite (linear) codimension. Let Cy and Cy be composition operators from A to B, and
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let Cg and Cy be their restrictions to As. Then Cy and Cy belong to the same hyperbolic
vicinity if and only if Cy and Cy belong to the same hyperbolic vicinity.

Proof. The estimate (4) and Theorem 4.1 show that if C, and Cy, are in the same hyperbolic
vicinity, then so are Cg and Cy5. We must show the converse. As before we assume that A,
is a subalgebra of A of codimension 1.

Assume that Cz and Cy are in the same hyperbolic vicinity. Let E denote the set
of y € My such that ¢(y) and 9(y) belong to the same Gleason part of M,,. Then
d(Mp\FE) and ¢(Mp\FE) are hyperbolically bounded in My,, so ¢(Mg\E) and ¢(Mp\FE)
are hyperbolically bounded in M4. Now py(6(y), ¥ (y)) = pa(é(y),¥(y)) whenever y € E
and ¢(y), ¥(y) are in some part other than Py or P; (in case 1) or P (in cases 2 or 3). The
estimates (10) in case 2 and (12) in case 3 show that pa(¢(y), ¥ (y)) < r’ for some r' < 1
and all y € E such that ¢(y),¥(y) € P, so that Cy and Cy are in the same hyperbolic
vicinity in cases 2 and 3.

So we assume we are in case 1, with the previous notation. In this case, if ¢(y), 1 (y)
both belong to the same Gleason part of My, then p,(o(y), %)) = pa(d(y),¥(y)). To
complete the proof, it suffices to show that if Ey is the set of y € E such that ¢(y) € Py

and 9(y) € P, and Ej is the set of y € E such that ¢(y) € P, and 9(y) € Py, then ¢(Ep),
&(E1), ¥(Ey), ¥(E,) are hyperbolically bounded in M,. The identity (7) and the bound
ps(6(y),1(y)) < 7 show that pa(¢(y), o) < 7' < 1fory € Ey, so that ¢(Ep) and 1(Ey) are
hyperbolically bounded. Similarly, ¢(E;) and 1(F;) are hyperbolically bounded. O

Corollary 4.3. Two composition operators Cy and Cy from A to B belong to the same
hyperbolic vicinity if and only if there is a unital subalgebra As of A of finite (linear)
codimension such that the restrictions of Cy and Cy, to Ag belong to the same norm vicinity,
that is, ||C¢‘, - CJ)H < 2.

Proof. If ||C5— Cy|| < 2, the operators Cj and Cy are in the same hyperbolic vicinity with
respect to Ay, hence by Theorem 4.2, C, and Cy, are in the same hyperbolic vicinity. For the
converse, suppose Cy and Cy, are in the same hyperbolic vicinity. Take clopen subsets E, in
Mp as in Theorem 3.4 so that ¢(E,) and ¢(E,) are hyperbolically bounded sets in different
Gleason parts, say P, and .. For each «, select an arbitrary pair of points z, € P, and
z! € Qq, and let A, be the collection of functions f € A such that f(z,) = f(,) for all
a. Then Ay is a subalgebra of A of finite codimension. By Theorem 4.2, the restriction
composition operators Cz and Cy are in the same hyperbolic vicinity. Since ¢(y) and v (y)
belong to the same Gleason part of My, for all y € Mp, Theorem 3.4 shows that C'; and
Cy belong to the same norm vicinity. O

5. HYPERBOLIC VICINITIES AND ESSENTIAL OPERATOR NORMS

We are now ready to apply Lemma 2.1 to see that hyperbolic vicinities are open in the
essential operator norm.

Theorem 5.1. If the composition operators Cy and Cy, from A to B satisfy ||Cy—Cylle < 1,
then Cy and Cy, belong to the same hyperbolic vicinity.
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Proof. Let E be the set of y € Mp such that ¢(y) and 1(y) belong to the same Gleason part
of A. Suppose {y;} is a sequence in E such that pa(¢(y,), ¢ (y;)) — 1. If both {¢(y;)} and
{%(y;)} are hyperbolically bounded, then Konig’s inequality (3) yields pa(¢(y;), ¥(y,)) <
s < 1, contradicting our assumption. Thus we can assume that either {¢(y;)} or {#(y,)}
is not hyperbolically bounded. However, we now deduce from Lemma 2.1 that ||Cy —

Cylle > 1, in contradiction to our hypothesis. We conclude that there is 7 < 1 such that
pa((y), ¥(y)) < rforally € E.

Now pa(¢(y),¥(y)) = Lforally € Mg\E. Our hypothesis and Lemma 2.1 then show that
{#(y;)} is hyperbolically bounded for any sequence in Mp\FE, and consequently ¢(Mp\FE)
is hyperbolically bounded, as is ¥ (Mp\FE). O

Corollary 5.2. Hyperbolic vicinities of composition operators are open in the essential
operator norm.

Thus hyperbolic vicinities of composition operators form a partition of the set of com-
position operators from A to B into disjoint subsets that are clopen with respect to the
essential operator norm.

Combining Corollary 5.2 and Corollary 3.5, we obtain the following.

Corollary 5.3. If Mp is connected, and if Cy is a composition operator from A to B such
that ¢(Mp) is not hyperbolically bounded, then the norm vicinity of Cy is open with respect
to the essential operator norm.

6. HYPERBOLIC VICINITY OF THE IDENTITY OPERATOR

In [HIZ], T. Hosokava, K. Izuchi, and D Zheng characterize the composition operators on
H*(D) arising from analytic self-maps of D that are isolated with respect to the uniform
operator norm. Further, they show that such operators are isolated with respect to the
essential operator norm. In particular, the identity operator on H* (D) is isolated. It turns
out that this result is quite general, as the following theorem shows.

Theorem 6.1. A composition operator Cy on a uniform algebra A belongs to the same
hyperbolic vicinity as the identity operator I on A if and only if Y(x) = x for all x € My
with the possible exception of finitely many isolated points of M 4. In particular, if M has
no isolated points, then the identity operator on A is isolated with respect to the essential
operator norm in the set of composition operators on A.

Proof. Note that I = Cy for ¢(z) = z, x € M4. We consider the decomposition of M,
as a disjoint union of F and the (finitely many) sets E, given by Theorem 3.4. Since E,
is clopen, it has a strong boundary point z,. Since ¢(FE,) is contained in one Gleason
part, and strong boundary points are one-point parts, we have ¢(z) = z,, for z € E,, and
E, coincides with the singleton {z,}. Thus all the E,’s are singletons, which are isolated
points of My.

On E we have pa(z,9(x)) <r < 1. If z € E is a strong boundary point of A, then it
comprises a one-point part, and consequently ¢ (z) = x. Since the strong boundary points
are dense in the Shilov boundary, this identity persists for all x in the Shilov boundary
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of the restriction algebra A|g of A to E. Consequently Cyf = f on the Shilov boundary
of the restriction algebra. It follows that Cyf = f on the spectrum E of the restriction
algebra. Thus ¢ (z) =z for x € E. O

It was conjectured in [AGL] that the identity operator on H*(By) is isolated in the set
of composition operators. The conjecture was settled affirmatively in [CHM]. Actually, the
identity operator on any uniform algebra A is isolated in the set of composition operators
on A with respect to the uniform operator norm. In fact, the identity operator forms by
itself a norm vicinity. To see this, suppose that C belongs to the same norm vicinity as
the identity operator. Then p(z,¥(z)) < r < 1 for all z € My, and we can take E = My
in the preceding proof. We conclude that ¢(z) = x for all € M4, and Cy = I.

A theorem analogous to Theorem 6.1 can be formulated for composition operators from
A to B.

Theorem 6.2. Let A and B be uniform algebras such that Mp is connected. Let Cy be a
composition operator from A to B. Suppose that ¢ maps strong boundary points in Mg to
strong boundary points in M4, and that ¢ is not constant. Then {Cy} comprises by itself a
hyperbolic vicinity. In particular, Cy is isolated with respect to the essential operator norm
in the set of composition operators from A to B.

Proof. If Cy is in the same hyperbolic vicinity as Cy, then in this case the sets E, in
Theorem 3.4 must be empty, and as before we obtain ¥(y) = ¢(y) for strong boundary
points, hence for all y € Mp. O
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