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Second printing: typos and minor changes

p.4, l.-10: Change “ f(∂∆) ” to “ ∂f(∆) ”

p.4, l.-2: Change “ are ” to “ is ”

p.7, l.3: Change “ wn ” to “ w0 ”

pp.9-10: Change the first sentence in Section 3 to read: “ It was P. Montel (1911) who
first formulated the notion of a normal family of meromorphic functions and proved the
criterion that bears his name. ” Montel’s original proof was based on Schottky’s theorem,
not on Picard’s modular function.

p.13, l.-4: Change “ the the ” to “ the ”

p.14, l.6: Change “ 2.1 ” to “ 3.1 ”

p.16, Fig.3: Add horizontal bars to the fractions π
2

and arg µ(z)
2

p.19, l.-7: Insert “ has nonvanishing Jacobian ” after “ If f ∈ QC1(k,R) ”

p.20, l.-9: Change “ ||Uµ|| ” to “ ||Uµ||p ” (insert subscript p)

p.20, l.-7: Change “ ||(I − Uµ)−1|| ” to “ ||(I − Uµ)−1||p ”(insert subscript p)

p.22, l.-5: Change “ the smoothness of f ” to “ f ∈ QC1(k,R) ”

p.22, l.-2: Change “ If f were C1 we would ” to “ If f were C1 and fz 6= 0, we would ”

p.30, l.-8: Change “ due in this form ” to “ due essentially in this form ”

p.33, l.-13: Change “ For |z| small there is ” to “ Choose ”

p.33, l.-12: Change “ C|z|p. ” to
“ C|z|p for |z| ≤ 1/C. Then |f(z)| ≤ |z| for |z| ≤ 1/C. ”

p.33, l.-10: Change “ δ ” to “ 1/C ”

p.33, lines 1 to 2: Delete “ at the origin ”

p.34, l.7: Delete “ c < ” so that it reads “ |z| ≤ 1/C ”

p.36, l.-1: Change comma to period after the last estimate, and add the line:
“ where the estimate is uniform for z belonging to a compact set. ”

p.39, l.9: Change “ to to ” to “ to ”

p.41, l.-14: Change “ let ” to “ suppose z0 = 0 is a fixed point of f(z), with multiplier ”



p.71, l.-13: Change “ inside ” to “ on the bounded components of ”

p.71, l.-3: Change “ 2d− 1 ” to “ 2d+ 1 ”

p.71, l.-2: Change “ 2d− 1 ” to “ 2d+ 1 ”

p.74, l.-1: Change “ an isometry ” to “ a local isometry ”

p.75, l.3: Change “ an isometry ” to “ a local isometry ”

p.75, l.4: Change “ z, w ∈ U . In particular for any ” to “ z, w ∈ U, z 6= w. Further, for
any ”

p.75, l.18: Change “ an isometry ” to “ a local isometry ”

p.75, l.-5: Change “ By an isometry, we mean at the local level, so that the lift ” to “
Since f is a local isometry, the lift ”

p.76, l.10: After the first sentence, insert “ We claim that either (1) or (2) holds. For
this, suppose that (2) fails. ”

p.77, l.15: Change “ (2) ” to “ (1) ”

p.87, l.2: Change “ λn−1 ” to “ λn ”

p.91, l.14: Change “ had been ” to “ is ”

p.91, l.15-16: Delete the sentence “ Recently . . . z16 + c. ”

p.100, l.3: Change “ through ” to “ around ”

p.101, l.10: Change “ conjugate to ” to “ conjugate on U1 to ”

p.128, l.15: Change “ are dense in M ” to “ are dense in ∂M ”

p.149, format: Insert space at end of example, between lines -5 and -6

p.154, l.-2: Insert “ = f(z, c) ” after “ P `
c (z) ”

p.157, format: Insert space at end of statement of theorem, between lines 16 and 17

p.173, Index: Change “ repulsive cycle, ?? ” to “ repulsive cycle, 172 ”



Second printing: patches and clarifications

page 11, proof of Theorem I.3.2 (Montel’s theorem)

The very last assertion of the proof requires justification. To do this, we follow the proof
given, except that we take ψ to be the universal covering map of the upper half-plane H
over C\{0, 1} constructed in the proof of Theorem 3.1, with fundamental domain E from
that proof, and we choose the lifts f̃ of functions f ∈ F so that f̃(0) ∈ E. The functions f̃
still form a normal family. Let {fn} be a sequence in F . Passing to a subsequence, we can
assume that f̃n converges normally to g on H. We must show that fn converges normally.
If f̃n(0) converges to a point of H, then the image of g is in H, and we can use the local
inverses of ψ to see that fn converges normally to the analytic function ψ ◦ g. Our problem
is to determine what happens when the limit of f̃n(0) does not belong to H.

If the limit of f̃n(0) is not in H, then since f̃n(0) ∈ E, either Re f̃n(0) → +∞, or f̃n(0)
converges to one of the corners 0 or 1 of ∂E. By composing the functions in the family F
with a fractional linear transformation that permutes the points 0, 1, ∞, we can assume
that Re f̃n(0)→ +∞. Then by Harnack’s theorem, Re f̃n(z)→ +∞ uniformly on compacta.
Using the periodicity of ψ, we see that |ψ(w)| → ∞ uniformly as Rew → +∞. Hence
fn = ψ ◦ f̃n converges to ∞ uniformly on compacta, and in particular it converges normally,
as required.

A variant of the proof, which avoids Harnack’s theorem, proceeds in outline as follows.
Replacing the family of functions F by the family of their square roots, one assumes that the
family omits four points {−1, 0, 1,∞} in the extended plane. Then one proceeds as above, to
the case where f̃n(0) converges to a vertex of E. In this case one considers the compositions
gn = ϕ ◦ fn, where ϕ is the fractional linear transformation that maps −1 to that vertex and
leaves the other two vertices of E fixed. Now g̃n(0) = ϕ(f̃n(0)) converges to a point of H.
We conclude as before that gn converges normally, as does fn.

page 55, proof of Theorem III.1.1

Theorem 1.1 requires some justification to the effect that a neutral fixed point in the
Fatou set belongs to a Siegel disk as defined. The following lemma clarifies the definition of
a Siegel disk, and Theorem 1.1 follows immediately.

Lemma Let 0 be a neutral fixed point for a rational function R, with multiplier λ. If 0 ∈ F ,
and if U is the component of the Fatou set containing 0, then Schröder’s equation ϕ(R(z)) =
λϕ(z), with side conditions ϕ(0) = 0, ϕ′(0) = 1, has a (unique) solution ϕ(z) defined on U
and mapping U conformally onto a disk.

Proof. We can assume that ∞ ∈ J . Note that R(U) ⊆ U . Since the iterates Rn form a
normal family on U , they are uniformly bounded on compact subsets of U . As in the proof
of Theorem II.6.2, the functions ϕn(z) = (1/n)

∑n−1
j=0 λ

−jRj(z) are uniformly bounded on
compact subsets of U , and any limit ϕ(z) of the ϕn’s has the required properties. �



page 77, proof of Lemma IV.2.3

To see that one of the alternatives (1), (4), or (5) holds, proceed as follows.

Suppose that U is a punctured disk, say U = ∆\{0}, with covering map ψ(ζ) = e2πiζ

from the upper half-plane H to U . If f is a local hyperbolic isometry of U , and F is the lift
of f to H, then F (ζ + 1) ≡ F (ζ), so there is an integer m such that F (ζ + 1) = F (ζ) + m.
Thus F fixes ∞, and F is affine. Evidently F (ζ) = mζ + b where m ≥ 1 and b is real. Thus
f(z) = e2πibzm. If m > 1, then (1) holds. If m = 1, then since Γ is discrete, b is irrational,
and (5) holds.

A similar argument shows that if U is an annulus, then (4) holds.

page 90, proof of Theorem V.2.3

In this proof, the a and c do not come directly from the statement of Lemma 2.1. They
come from an open neighborhood V of J , as follows. Let V be an ε-neighborhood of J with
respect to the hyperbolic metric of D = C\CL. Then R−1(V ) ⊂ V . For ε > 0 small, there
is A > 1 such that (2.1) holds for z ∈ V . Set c = 1/A and a = (sup σ)/(inf σ), where the
sup and the inf are taken over V . Then |(Rk)′(z)| ≥ a/ck for all z ∈ V such that Rk(z) ∈ V ,
as in the proof of Lemma 2.1.

page 143, proof of Theorem VIII.5.2

There is a gap in the proof, which requires substantial work to fill. The problem is to
show that if Pa has a parabolic cycle, then θ has odd denominator. The gap is filled, and
in a more general setting, in the Doctoral Dissertation of Gustav Ryd, “Iterations of one
parameter families of complex polynomials,” Department of Mathematics, KTH, Stockholm
(1997), ISBN 91-7170-210-5. The relevant statement is Proposition 5.8, whose proof covers
pages 38-43.

Ryd’s thesis contains much more. In particular, it contains (Dissertation Section 3)
theorems on the landing of external rays at parabolic and repelling periodic points of the
Julia set of a rational function. It also carries out (Dissertation Section 7 and Theorem 8.1)
the “main deformation construction” sketched at the end of Section VIII.7, again in a more
general setting.

Ryd devotes special attention to one-parameter families of polynomials that have the
form

Pc(z) = zd + αd−1(c)zd−1 + . . .+ α0(c), P ′c(z) = d

d−1∏
j=1

(z − pj(c)),

where α0(c), . . . , αd−1(c) and p1(c), . . . , pd−1(c) are polynomials in c. This includes such
one-parameter families such as zd + c, and more generally p(z) + c, where p is a polynomial.
Thus each critical point has polynomial dependence on c, and one can define a “Mandelbrot
set” Mj for each critical point. Ryd investigates the behavior of Pc as c→ a ∈Mj.


