Last time: classifier equilibrium behavior her 2x2 System. A $P_A(x) = x^2 - T_r(A) x + det(A)$ $\lambda_{1},\lambda_{2} = T \pm T^{2} + 4D$ Remember: most of the Classification was done oused on regenuates. bused on

Trace - Determinant Plane:

Degenerate Degenerate Source Jink Spiral Center Spiral Sink Source Nodal Source Sink Modal Unstable 7 Suddle-node Stable T Saddle nøde Saddles $T^2 = 4D$

Irace - Determinant plane is a docful example of Something Called a parameter Space.

 $\gamma' = A\gamma$

Examples	
$A = \begin{pmatrix} 42\\ 32 \end{pmatrix}$	T = 6 $D = 2$
=> Nodal	Source
$A = \begin{pmatrix} 5 & -3 \\ -8 & -6 \end{pmatrix}$	$ \begin{bmatrix} - & - \\ - & - \end{bmatrix} $
>> Saldle	
$A = \begin{pmatrix} 1 & -3 \\ 3 & -5 \end{pmatrix}$	T = -4 $ D = 4$
=> degenera	• 0
Sijk.	

 $\overline{1} = 0$ $\begin{pmatrix} 8 & 20 \\ -4 & -8 \end{pmatrix}$ • A = D = 16 Center. \longrightarrow

Biturcation: Let's examine à family of linear Systems of ODES al Sec how the behavior changes depending on a parameter.

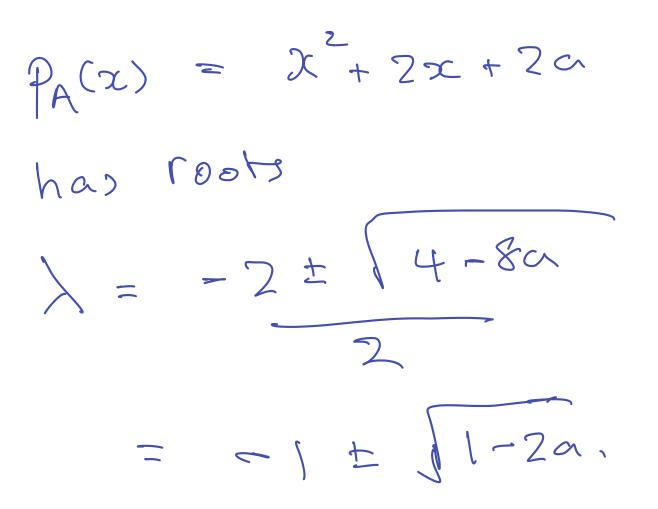
 $A = \begin{pmatrix} -2 & 0 \\ -2 & 0 \end{pmatrix}$ Y' = AY $I_{I}(A) = -2$ T= FI) Det(A) = 2a Spiral Sink D degenorate notal nodal Sinv Sink Stalde Dode Saddle

As we vong a, the System ceeget lives on the red line in the TFO plane. bifurcation happens the red dats: =) 22200 Det(A) = O $\Rightarrow \alpha = 0$ $4 = 8\alpha$ $\Rightarrow \alpha = \frac{1}{2}.$ T=40 => Two bifurcation values:

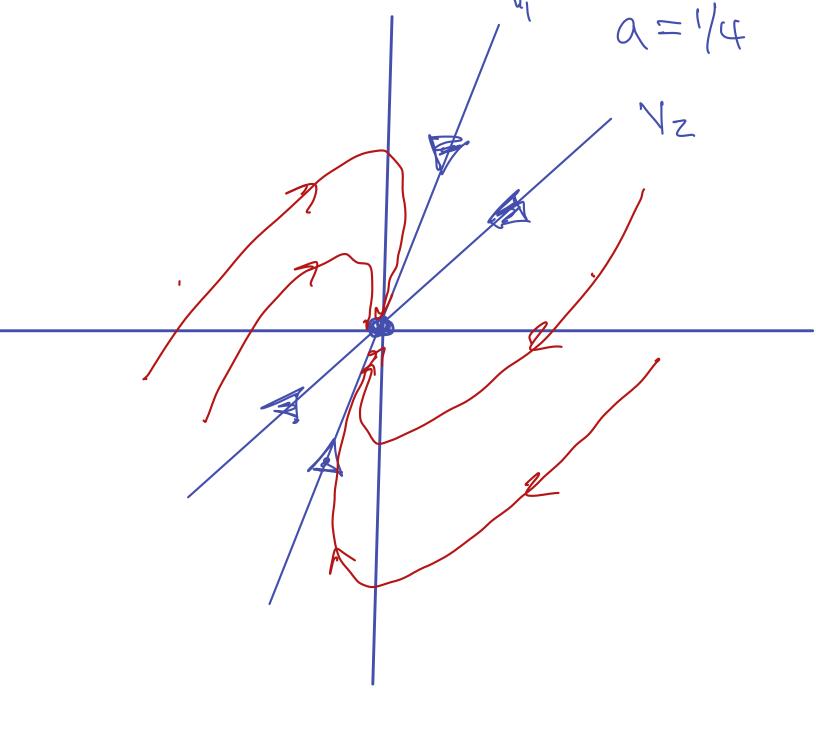
 $\mathcal{O}_{r} = \mathcal{O}_{r}^{1} | \mathcal{E}_{r}$

Let's investigate the Suburcation at 1/2 a

little more closely.

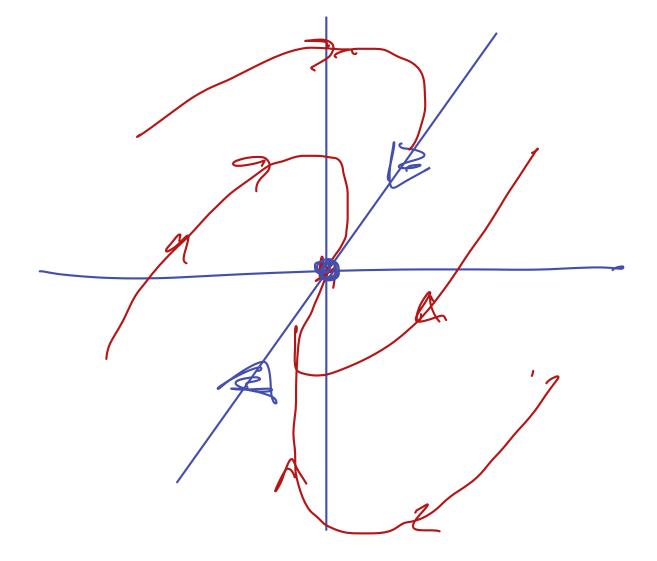


The eigenvectures associated to each eigenvalue as follows. $V_{1} = \begin{pmatrix} \alpha \\ 1 + \sqrt{1-2\alpha} \end{pmatrix}$ >=-1+11-2a $V_2 = \begin{pmatrix} a \\ 1 - 1 - 2a \end{pmatrix}$ $\lambda_2 = -1 - (1 - 2a)$

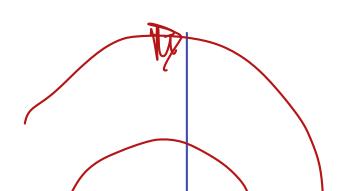


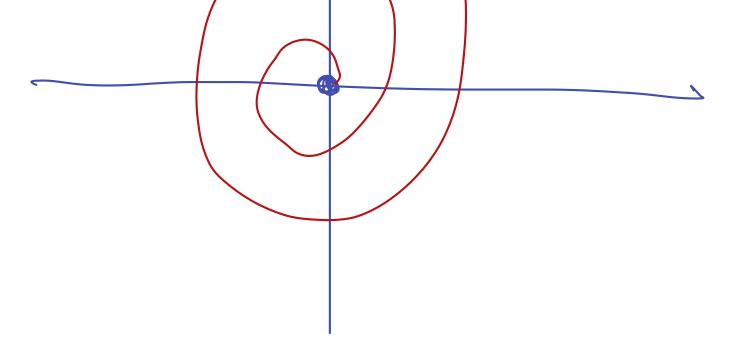
 $V_1: 4(1+f_2) \times 4(1-f_2) \times 4(1-f_2) \times$

a=1/2



\vee : 2×



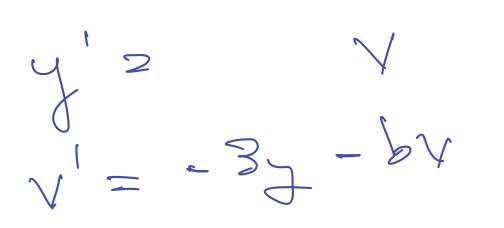


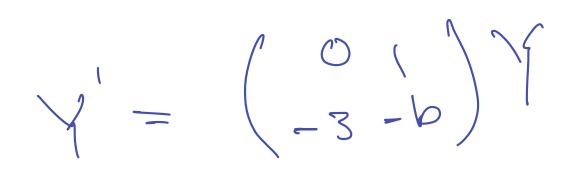
Another example. Harmonic Oscillation.

my' + by' + Ky = 0

For the Sake of example, could pick M = 1, K = 3.How the behavior change as we van the dangening hictor b? $(b_{7}, 0.)$ First, let's Convert to a System:

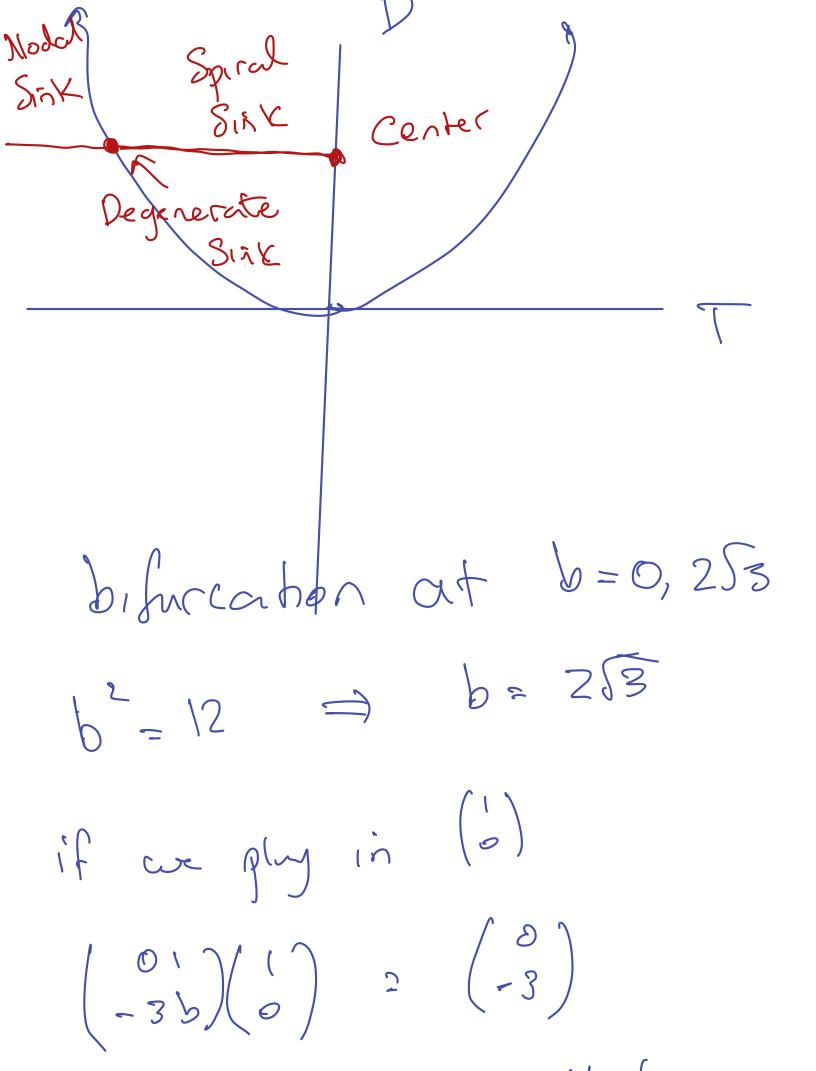
y' = Ny'' = -by' - 3y = V'= -bx - 3y



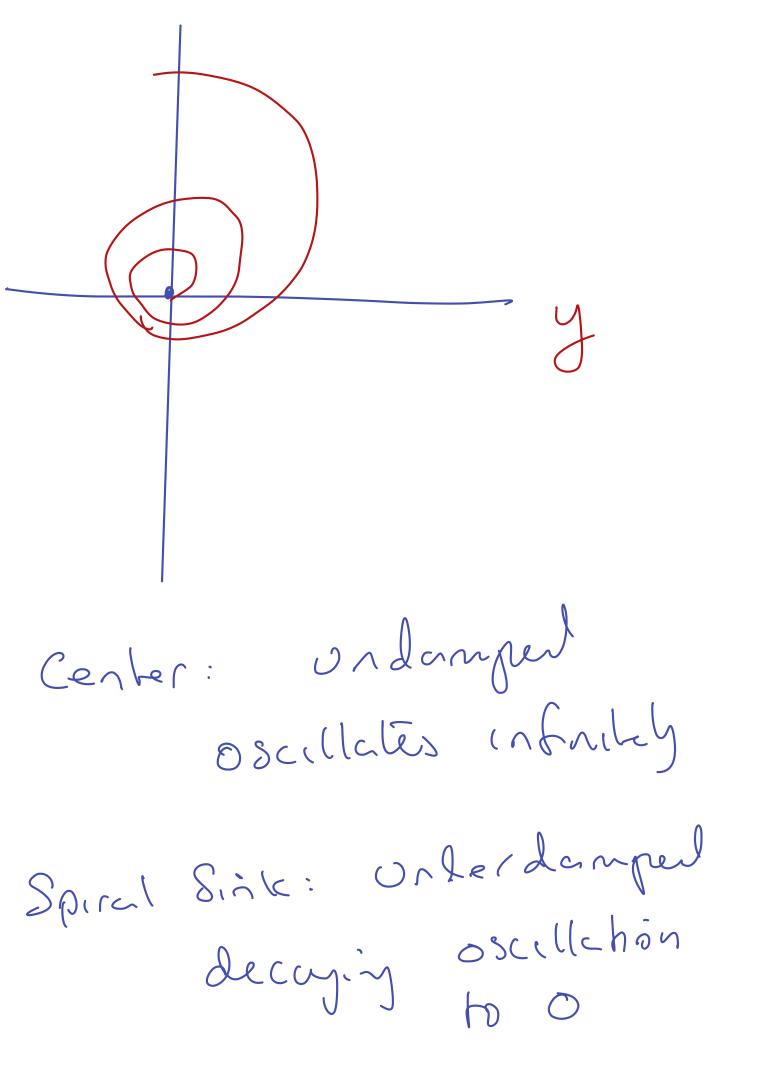


Tr(A) = -b

Def = 3



rotations will be So all Clouk wie. cu centr 0=0 2 cw spiral siñk · OCLOC253 Degenerate Siñk · 10-25 Nodal Sink 0 27253



Degen Sink: Critically Oscilchón danpel: No goes back to starting pos. as fait as possible and Stops Nodal Sink: ovordamped block Slowly goes back to starting poschoir.

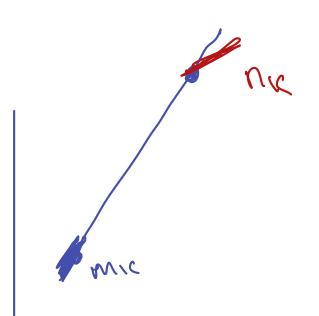
Kunge - Kutter As you sous on HWZ, Eulet's method is not numerically Stable. Let's talk about a better method. Technically, these are a Samily of methods bet "Runge-Kutta" usually means "RKq".

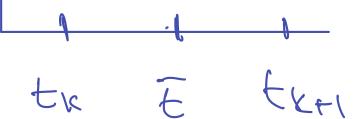
If you The dea: remember nemerical Fon CalC: integration Eilers mither (rapezoeide) Enle RK Simpson's we're going to construct a weighted avery make of Slopes to a Step.

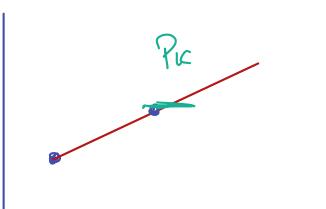
Yr $\triangle t$ tr · Four Slopes: Mic, Nr, Pr, 9r, 9r $M_{\mathcal{L}} = f(t_{\mathcal{K}}, y_{\mathcal{K}})$ $\tilde{t} = t_k * \Delta t$ yx = yx r mk At $n_{k} = f(\tilde{t}, \tilde{y}_{k}).$ YK : YK + NK. ZE $q_{k} = f(t, y_{k})$

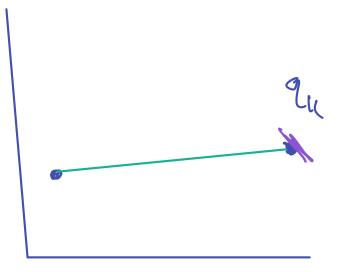
Yx = $y_{x} + g_{x} \Delta t$

f(tkm, yk). PK =









The Step is given by YEAR = YK + 6 (MKEZNKEZGKEPR)AC $t_{k+1} = t_k + \Delta t$

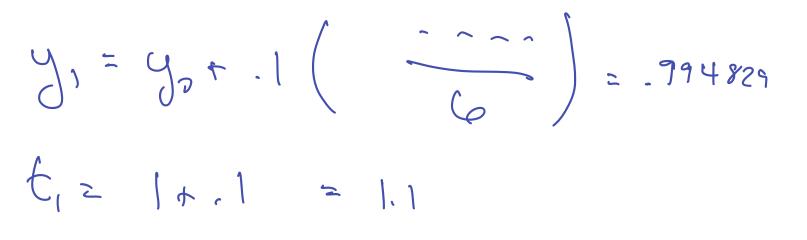
Ex: y'= y-t y(i) = 1han 4 Herates to estimate

y(1.4).

First Step:

 $y_{2} = 1$ $t_{2} = ($ $\tilde{t} = 1.05$ $m_{o} = f(1,1) = 1-1 = 0$ $m_{o} = f(\overline{t}, y_{o} + m_{o} \cdot .05) = 1-1.05$ = -.05 $q_{o} = f(\overline{t}, y_{o} + n_{o} \cdot .05) = -.0525$

 $P_0 = f(t_1, y_0 + \gamma_0 \cdot \cdot 1) = -,10525$



 Y_{k} (Euler) tx Yx (RK))

) e | · 994829164 . 978597429 . 7 9 1.2

[.3]. 969 . 950141502 . 9359 1.4 · 908175719 Yk (Actual) tic 1 6 . 994829081 , 978517241 1.2 1.3 .950141072- 908175302 1.4 way better, Works Juich remark on error:

Euler's method is a first order technique. ble it uses first order Taylor approx. (i.e. tayent lines). Error at each Step 2 c.h² (Tuylor's than) Total error à # steps ch² 2 and 2 c.h for some c. · RK4 is a touch order method: Three are 4th order Taylor polynomicly

Somewhere is the background. Error at each a C.h.S (Taylor's Thm) Step in C.h.S (Taylor's Thm) Total Error & C.h.G for Some C.

In acheality, with round off arror it's roughly $x c_{1} \cdot h + \frac{c_{2}}{h}, s_{2}$ Step Size certh RK Shouldn't be too Small to make Sure round off croor isn't more Significant.

J