Application: Population growth

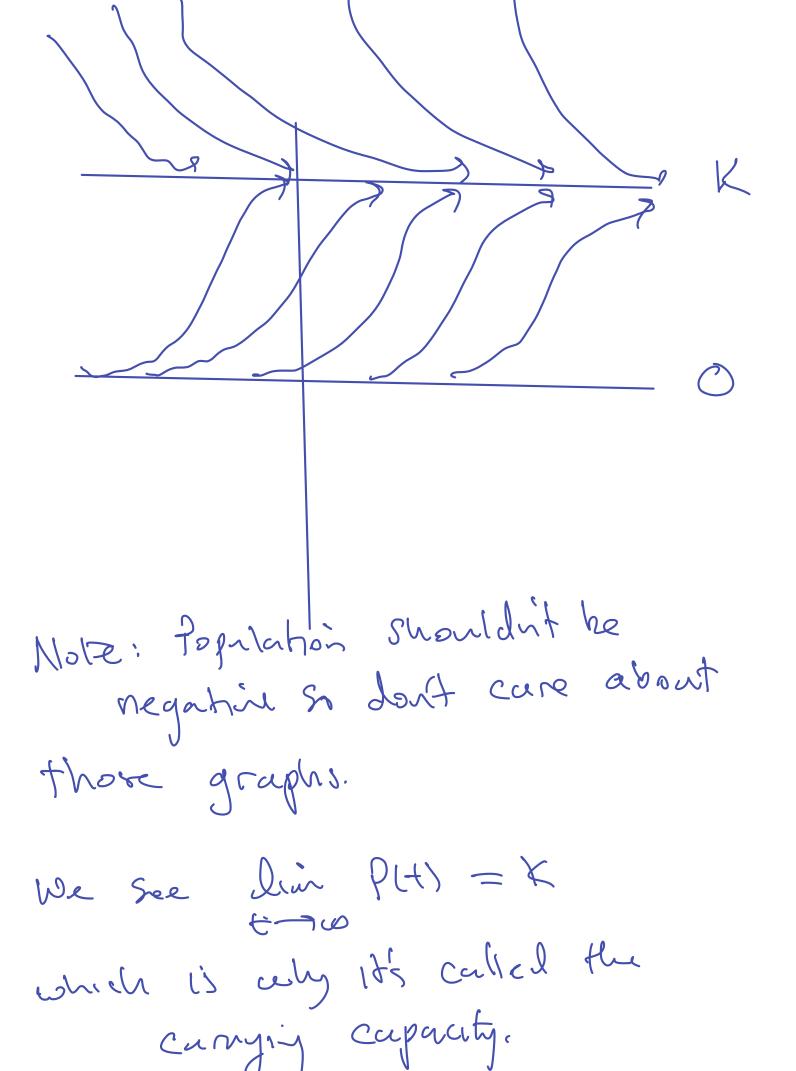
P(t) gopulation at time t P(t) Birth rate Unit of population S(t) Death rate Conit of time

In some interval [t, t+At]# Births = $B(t) \cdot P(t) \cdot At$ # Death = $8(t) \cdot P(t) \cdot At$

 $AP = (B(t) - S(t)) \Delta t$ $\frac{AP}{At} = (B(t) - S(t)) \quad S_{2} \quad a_{2} \quad \Delta t \to 0$ $\frac{dP}{dt} = (B - S) P \quad General$ $\frac{dP}{dt} = (B - S) P \quad General$ $\frac{dP}{Population} \quad equation$

This is Separable and so in theory we can solve. In the real world, growth usually bounded, lack of fool, space, etc. Lett assume p dec. linearly and Sinc. linearly: 13 = pr - p. P $S = S_{p+1} S_{r} P$ $\frac{dP}{dF} = (\beta_0 - \delta_0)P - (\beta_1 + \delta_1)P$ $e = \beta_0 - \delta_0$ $K = \Gamma / \beta_1 + \delta_1$

 $\frac{dP}{dt} = \Gamma(I - \frac{P}{K})P$ Logistic groeoth model r = growth rate K = Carrying Capacity This is autonomous, & leté de qualitative analysis: Equilibrium points: $F(1-\frac{p}{K})P = 0$ P=0 and P=K K f P=K Stalole P=0 unstable



0]

Explicit sol":

 $\frac{dP}{dF} = r\left(1 - \frac{2}{K}\right)P$

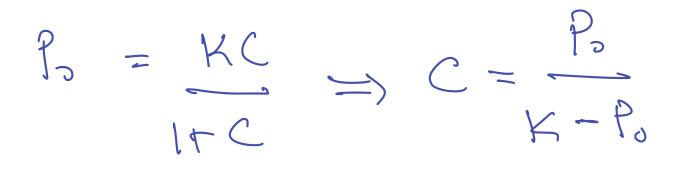
 $K \frac{dP}{dF} = C(K-P)P$

K	SP	Į	rdt	
(K-P)P				

Note	that K	"	<u> </u>	+ 1
·	(1(-P)P		P	K-P

 $\int \frac{1}{P} = \frac{1}{K-P} dP = \int r dt$

 $\begin{aligned} \int |P| = \int |K-P| &= rt + C \\ \Rightarrow & \frac{P}{K-P} &= Ce^{rt} \\ P(t) &= \frac{KCe^{rt}}{1+Ce^{rt}} & \text{If we let} \\ & P_0 = P(0) \end{aligned}$



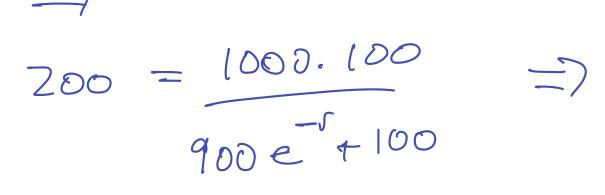
P(t) = KP. $P_{o} + (K-P_{o})e^{-rt}$ One can easily then see that

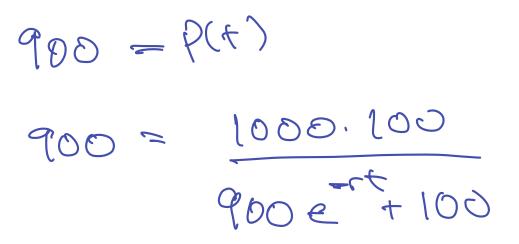
 $\lim_{t \to \infty} P(t) = K.$

EX: Suppose we have a good that can support 1000 fish. Let's Say you have 100 Fish Inchally in the poul. Suppose after 1 year, there 200 Fish with pond. How long to hit 90% Capacity?

K = 1000 $P_0 = 100$ P(1) = 200

(000, (00) P(t) =900 e + 100





=> t ~ 5.419 gears

Harvesting: Suppose ue have a port and we're trying to model population of fish in the pond. Suppose our model is $\frac{dP}{dt} = P(1 - \frac{P}{200})$ Let's say we allow for H Fish to be Fished each year. $\frac{dP}{dt} = P(1-\frac{f}{200}) - H$

Let's start by investigating behavior for certain valus of H. H = 32: $df = P(1 - f_0) - 32$ Equilibrium $pts: p(1-\frac{2}{2}) - 32 = 0$ P= 40, 160 40 unstable 160 160 t 160 stable

If P drops below 40, the population will die off?

 $\mathcal{H} = (DO:$

$$dP = P(1-\frac{2}{200}) - 100$$

$$Equilibrium pts: P(1-\frac{2}{200}) - 100 = 0$$

$$N > veal sol^{a}s!$$

Note that P((-200) has Maximum vale of 50, and 80 dP LO = population always dies off!

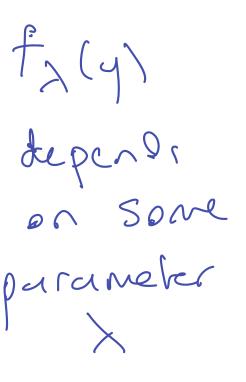
H = 50: $\frac{dP}{dt} = P(1 - \frac{P}{200}) = 50$ P = 100Equilibrium pts: Population good as long as P 2100.

What's going on? $\frac{\partial Y}{\partial t} = rP(I-P|K) - H$ Equilibrium pts: $rP(1 - P|_{K}) - H = 0$ $-cp^2 + ckp - kH = 0$ $\Rightarrow P = \frac{K}{2} \pm \left(\frac{K^2}{4} - \frac{KH}{6}\right)$ $A = \frac{K^2 - KH}{4}$ A LO: H > CK/4no real sol => no equil. pts and dp co

U So population i doomed? HZ rK/4 two $\Delta > 0$: pts: equilibrium Stable K+ JA K- TA Unstable H- CK V = 0KN Semisfalde The behavior dependi drashcally H. on the parameter

In our case. H=50 is "Special": we call it a because bifuscation point # equal gbs changes from 2 to 1 to D as we gass through the

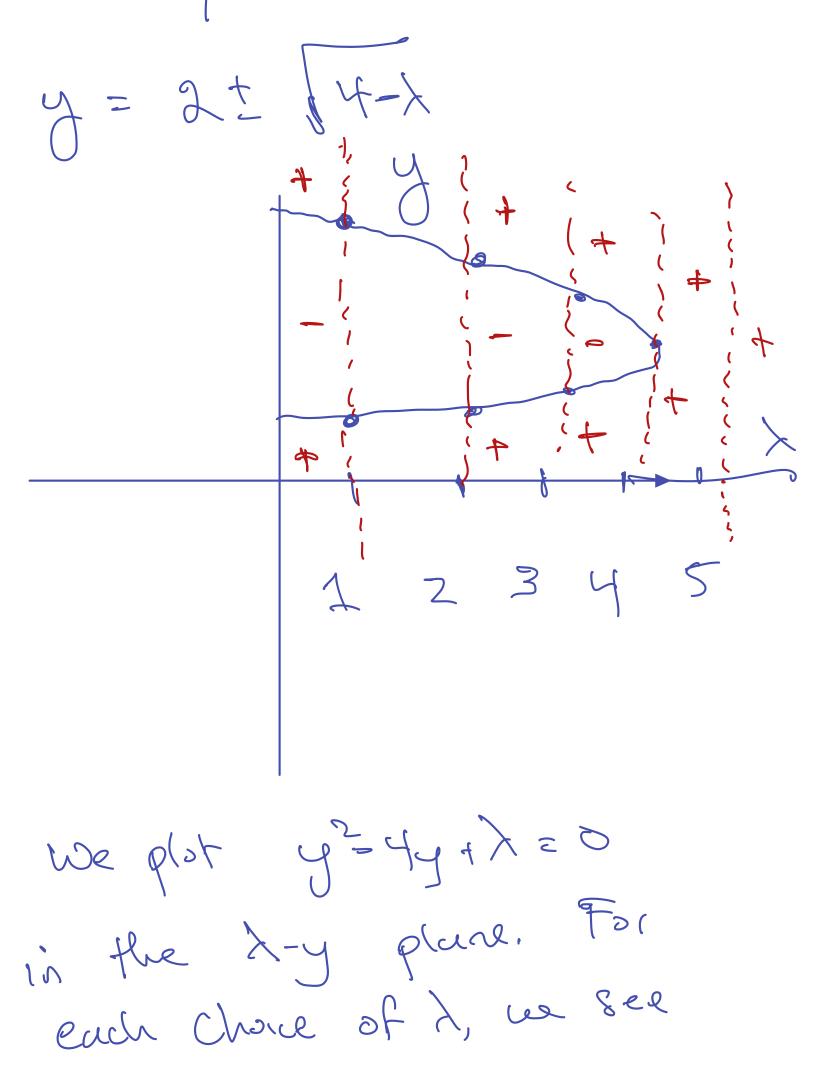
In general: $y' = f_{\chi}(y)$ p



One parameter family of ODES

bituscation at $\lambda = \lambda_0$ if # equilibrium ptr changes Usually analyze this with Something called a bibuccation diagram.

Ex: $y' = f_{\lambda}(y) = y^2 - 4y + \lambda$ The equal. Solutions are

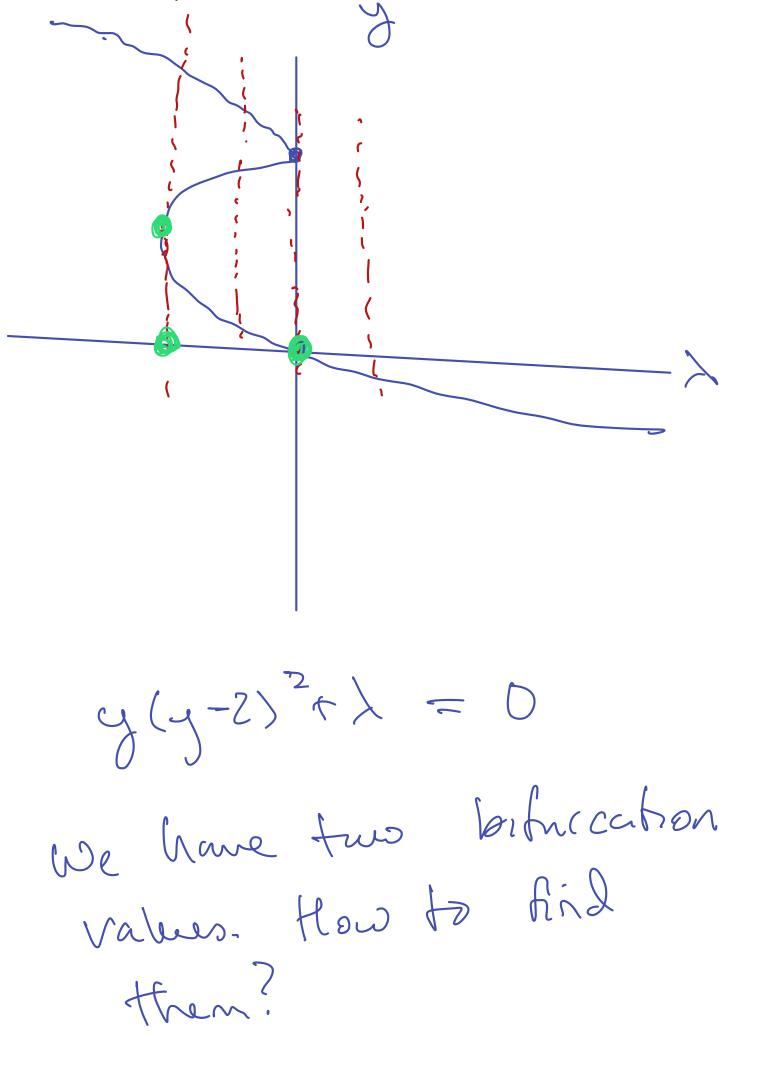


how may equil. pts There are and if we want figure ont phase Can ducysam at each pt. We can see at $\lambda = 4$ we nave behercation ble

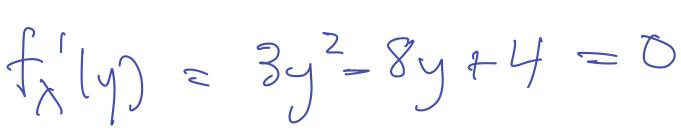
Change from 2 tos to 0 equilibrium pts.

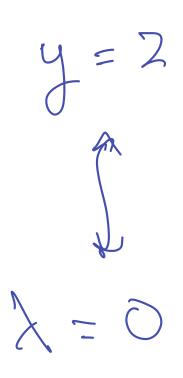
 $E_{X''} \quad y' = f_{y}(y) = y(y-2) + \lambda$

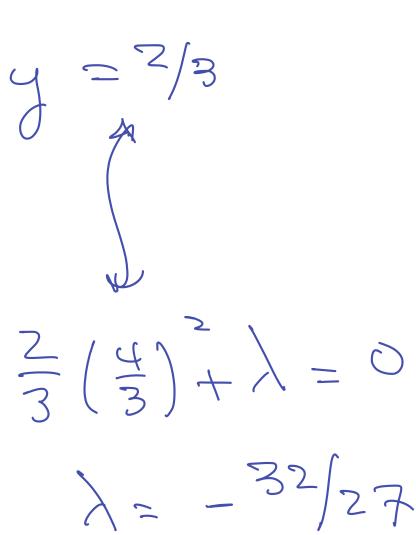
Bifurcation diagram:



The left most bifurcation will happen when $f_{\lambda}(y) = 0.$







In general, is value coure bihicahon happens: $f'_{\lambda}(y) = 0$ gluig into equichon to find bifurcation value 2.

Second order ODES

y'' = f(t, y, y')a sola is a hinchion y (19) that is twice continuously differen trable

Many grobbens in physics grie rise to second order ODES

e.g. $\vec{F} = m\vec{a}$,

harmonic oscillation, etc.

frop: If y, and yr both some y'' + py' + qy = 0Then any lineur combination of y, and yz will solve this deft eq. Proof Exercise. Det: y, and je are called linearly dependent if y, = Kyz for some some Constant K. If y, and yz are not linerly dependent, they are called linearly independent

 $y_2(t) = t^2$ E_{X} : $y_{i}(t) = t$ linearly y,(f) and yz(f) are independent on IR. $y_{t}(t) = Sin(t)$ $y_{2}(t) = = 4Sin(t)$ linearly y,(t) and y2(t) are dependent

linearly Thm: y, and yz are independent SDI to then y'' + py' - qy = 0

Mote: « cor shudy linear ODEs blc use con use techniques st linear algebra. The Sola set Fou 2nd order homogenous différentil eq forms - 2-dim vector space, so 2 linearly independent vectors yield a basis.

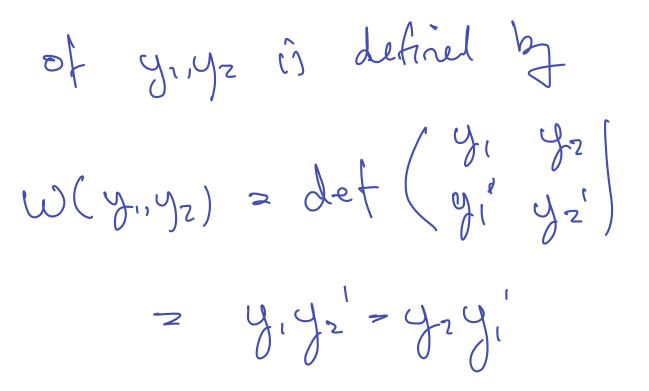
. We still have existence and oniqueness them

for 2nd order ODE:

y"- gy'r gy = g $y(0) = y_0$ $y'(0) = y_0'$ will have ongre Solution to IVP on some interval. given it's sufficiently "nice"

How to tell if two functions are linearly independent?

Def. The Wronckian $W(y, y_2)$



The Wronskian Measures how leverty independent two functions are:

Thm: Yingz are linearly dependent on I. Then $W(y_1,y_2) = 0$ on I. Alternatury, WZD on E, then Yigz are linearly independent.

Proof:
$$y_1 = Ky_2'$$

 $y_1' = Ky_2'$
 $W(y_1,y_2) = (Ky_2)y_2' - y_2(Ky_2) = 0$
 $Warning: W = 0 \neq y_1, y_2 (incarly)$
dependent in general.!!

Thum if y_1, y_2 are Solⁿ to y'' + py' + qy = 0 on I,

Proof: Always holds from abore Ann. $= 0 \quad \text{Suppose } (U(y_1,y_2) = 0)$ on Σ . If $y_2 \ge 0$ on T, then $y_2 = 0.y_1 =)$ Inearly dependent. otherwise y2(to) = o for some to E I. By continuity, $y_2(t) \neq 0$

La some interval Is containing
to. Then note
$\left(\begin{array}{c} y_1\\ y_2\end{array}\right)' = \begin{array}{c} \omega(y_1,y_2)\\ y_2^2\end{array} = \begin{array}{c} 0\\ y_2^2\end{array}$
=) y, = Kyz for some KEIR
on Fo. Since y, and Kyr
solve the same ODE on Eo
by Uniqueness, they must
agree on all of I
=) y, and yz kneady
dependent on II.

y'' + 4 sin(y) = 0y(0) = 4y'(0) = 2Can Check that ore both y, (+) = cos(7+) 50/~ y, (+1 = Sim (2+)

 $\mathcal{N}(y_1,y_2) = det \left(\frac{\cos(2t)}{-2\sin(2t)} \frac{\sin(2t)}{2\cos(2t)} \right)$

 $= Z \operatorname{cosl} 2f)^2 + 2 \operatorname{Sin}(2f)^2 = 2.$

So W # 0 => yi, yz linearly independent

y(t) = (cos(2t) r sin(pt))13 general Sol?