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9.4.4 Classify the equilibrium points of the system Y ′ =

(
8 3
−6 −1

)
Y , sketch the phase portrait

by hand, and find the general solution.

Solution: The characteristic polynomial is pA(x) = x2 − 7x + 10 = (x − 5)(x − 2). Thus,

the eigenvalues are λ = 2, 5. An eigenvector for 2 is v1 =

(
−1
2

)
and an eigenvector for 5 is

v2 =

(
−1
1

)
. The general solution is then Y (t) = c1

(
−1
2

)
e2t + c2

(
−1
1

)
e5t. Since the two

eigenvalues are positive, distinct real numbers, this means the phase portrait of the system is a
nodal source. Since the trajectories must leave the origin and eventually become parallel to v2
and they approach the origin tangent to v1, we get the following picture. To determine which

way it seems like solutions trajectories “rotate” in this case, pick a test point, say v =

(
1
0

)
.

The vector field at this point is Av =

(
8
−6

)
which appears to be “clockwise”.

10.3.14 Perform a global analysis in the first quadrant of the phase plane of the system x′ = y−x,
y′ = x− y2 to determine the trajectory of various solutions.

Solution: The x-nullcline is the line y = x and the y-nullcline is the parabola x = y2. The
equilibrium points are where y = x and y = y2, i.e. (0, 0) and (1, 1). The nullclines in the
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first quadrant along with the corresponding directions of movement along the nullclines are
sketched below. Now, I claim that all trajectories tend towards (1, 1). In regions I and II this
is obvious, because solutions can only move right/up and down/left respectively. In region IV,
because x > y we have x′ < 0 and since x > y2 we have y′ > 0, so all movement must be
left/up. This leaves three possibilities: either a trajectory enters region I or region II, in which
case it gets forced towards (1, 1), or the solution just approaches (1, 1) while staying in IV.
Region III similarly has y > x so x′ > 0 and y2 > x so y′ < 0, so all movement is right/down.
The same analysis shows that any trajectory starting in region III tends to (1, 1).

1. Consider the one parameter family of linear systems

Y ′ =

(
a a2 + a
1 a

)
Y

(a) Sketch the curve in the trace-determinant plane that comes from varying the parameter a.

(b) Determine all bifurcation values of a and describe the different types of phase portraits that
are exhibited by this one parameter family.

Solution:

(a) The trace of the matrix is T = 2a and the determinant is D = −a, so the curve cut out
by this one parameter family is the line D = − 1

2T .

(b) The bifurcation values happen when D = − 1
2T intersects the critical curve T 2 = 4D. This

happens when T 2 = −2T , i.e. T = 0,−2. This corresponds to a = 0,−1 respectively, so
these are the two bifurcation values of a. This gives rise to several cases:

� a < −1: this means T < −2 and D > 1, so we are underneath the left branch of the
parabola, so the family is a nodal sink.

� a = −1: this happens when T = −2 and D = 1, which is on the left branch of the
parabola. This is a degenerate nodal sink.

� −1 < a < 0: this means −2 < T < 0 and 0 < D < 1, so we are above the left branch
of the parabola, which says the family is a spiral sink.

� a = 0: this means T = 0 and D = 0. There’s not a name for this case, but we can
still sketch the phase portrait.
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� a > 0: we have T > 0 and D < 0 so the family is a saddle.

The generic looking picture for each of these cases should be clear, with the exception
of a = 0. (Make sure you understand how you would be able to sketch a specific phase
portrait if you fixed a value of a!) To figure out what the phase portrait looks like for

a = 0, note that this gives the system Y ′ =

(
0 0
1 0

)
Y , i.e. dx

dt = 0 and dy
dt = x. This

says there is no x-direction movement, and all y-direction movement is proportional to
the x-coordinate. Therefore, the phase portrait consists of vertical lines that move up in
the right half plane, and down in the left half plane.

2. Consider the differential equation y′′ − y + y3 = 0.

(a) Convert the differential equation into a 2D system of the form y′ = f(y, v) and v′ = g(y, v)
for some functions f, g. Find the equilibrium points, and classify their behavior.

(b) Find a function H(y, v) such that ∂H/∂v = f(y, v) and −∂H/∂y = g(y, v).

Solution:

(a) Set y′ = v, so that v′ = y′′ = y− y3. The equilibrium points of this system happen when
v = 0 and y − y3 = 0, i.e. (0, 0), (0, 1), (0,−1). The Jacobian matrix of the system is(

0 1
1− 3y2 0

)
. At (0, 0), this gives

(
0 1
1 0

)
, which has trace 0 and determinant −1, which

is a saddle. Since a saddle is generic, the non-linear system also has a saddle at (0, 0). At

(0, 1) and (0,−1) this is

(
0 1
−2 0

)
, which has trace 0 and determinant 2, so it is a center.

Since a center is non-generic, we can’t necessarily conclude anything about the behavior
of these equilibrium points for the non-linear system. However, by part (b) we see that
the trajectory of solutions must follow the level curves of H(y, v) = 1

2v
2 − 1

2y
2 + 1

4y
4.

These level curves are closed, and the only equilibrium behavior where solutions are closed
curves are centers. Therefore, this means (0, 1) and (0,−1) are actually centers for the
non-linear system as well.

(b) We want ∂H/∂v = v, so H(y, v) = 1
2v

2 + h(y) for some h. Taking a y-partial, this
means ∂H/∂y = −(y − y3) = h′(y), so h(y) = − 1

2y
2 + 1

4y
4 works. This says H(y, v) =

1
2v

2 − 1
2y

2 + 1
4y

4 is a choice of H that works.

Remark: If you have a non-linear system x′ = f(x, y) and y′ = g(x, y) and you can find a function
H(x, y) such that ∂H/∂y = f(x, y) and −∂H/∂x = g(x, y), then two things happen:
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1. The trajectories of solutions to the system must follow along the level curves of H(x, y).

2. The level curves of H(x, y) are closed curves near equilibrium points where the linearization
is a center.

This gives us a general technique for proving that a center remains a center for a non-linear system!
If you have taken math 32A/B before, here’s an explanation as to why this happens.

1. The vector field X = (∂H/∂y,−∂H/∂x) tells us which way tangent vectors to solution tra-
jectories point. This vector field is orthogonal to the gradient field ∇H, and the gradient is
normal to level curves. Being orthogonal to the gradient therefore means X is tangent to level
curves, so those give the trajectory.

2. If f(x, y) = ∂H/∂y and g(x, y) = −∂H/∂x, then at an equilibrium point (x0, y0) of the system

the Jacobian matrix is

(
∂2H/∂y∂x ∂2H/∂y2

−∂2H/∂x2 −∂2H/∂x∂y

)
, which has trace 0 because mixed partials

are equal, and determinant −(∂H/∂x∂y)2 + ∂2H/∂x2 · ∂2H/∂y2. The Hessian matrix of H

is given by

(
∂2H/∂x2 ∂2H/∂x∂y
∂2H/∂y∂x ∂2H/∂y2

)
which has the same determinant. If the linearization

is a center at (x0, y0), then this determinant is positive. The second partial derivative test
then says that H has a local max/min at (x0, y0), and so locally near this point the graph
of H looks like a “bowl”, pointing downwards or upwards respectively. Intersecting with a
constant z-plane then gives level curves that look roughly like ellipses, which in particular are
closed.
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