Selected Solutions to Homework 3

Tim Smits

July 17, 2022

4.5.38 Solve $y'' + 16y = e^{-4t} + 3\sin(4t)$.

Solution: First, we find a particular solution $y'' + 16y = e^{-4t}$. We guess $y_p(t) = Ae^{-4t}$. Plugging in, we get $16Ae^{-4t} + 16Ae^{-4t} = e^{-4t}$, so $A = \frac{1}{32}$. Next, we find a particular solution to $y'' + 16y = 3\sin(4t)$. We guess $y_p(t) = A\cos(4t) + B\sin(4t)$. Plugging in, $-16A\sin(4t) + 16B\cos(4t) = 3\sin(4t)$, so $A = -\frac{3}{16}$ and B = 0. This gives $y_p(t) = -\frac{3}{16}\cos(4t)$. The sum of these particular solutions then solves our equation, giving $y_p(t) = \frac{1}{32}e^{-4t} - \frac{3}{16}\cos(4t)$ as the solution.

9.2.20 Solve Y' = AY with $A = \begin{pmatrix} -1 & 3 \\ -3 & -1 \end{pmatrix}$.

Solution: The characteristic polynomial is $x^2 + 2x + 10$ which has roots $-1 \pm 3i$. Take $\lambda = -1+3i$ so $\bar{\lambda} = -1-3i$. To find an eigenvalue for λ , we solve $(A - \lambda I)v = 0$. This means solving $\begin{pmatrix} -1 - (-1 + 3i) & 3 \\ -3 & -1 - (-1 + 3i) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. This says -3ix + 3y = 0 and -3x - 3iy = 0, so y = ix. We may then take $v = \begin{pmatrix} 1 \\ i \end{pmatrix}$ as an eigenvector, so $\bar{v} = \begin{pmatrix} 1 \\ -i \end{pmatrix}$ is an eigenvector for $\bar{\lambda}$. The general solution is then $Y(t) = c_1 \begin{pmatrix} 1 \\ i \end{pmatrix} e^{(-1+3i)t} + c_2 \begin{pmatrix} 1 \\ -i \end{pmatrix} e^{(-1-3i)t}$.

9.2.30 Solve Y' = AY with $A = \begin{pmatrix} -3 & 1 \\ -1 & -1 \end{pmatrix}$.

Solution: The characteristic polynomial is $x^2 + 4x + 4 = (x + 2)^2$, so $\lambda = -2$ is a repeated eigenvalue. To find an eigenvector, we solve (A + 2I)v = 0, i.e. $\begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. This says x = y, so we can take $v = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ as an eigenvector. Now, we need to find a generalized eigenvector. To do this, we need to solve $(A + 2I)v_2 = v$, i.e. $\begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ this means y - x = 1, so we can choose $v_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. The general solution is then $Y(t) = (c_1 + c_2 t) \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{2t} + c_2 \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{2t}$.

3. Consider the IVP $y'' - (1 - y^2)y' + y = 0$, y(0) = 0, y'(0) = 1.

(a) Use the method outlined in class to convert the second order differential equation into a system of first order differential equations.

(b) Use Euler's method with step size h = .1 to approximate y(1).

Solution:

- (a) Set v = y', so $v' = y'' = (1 y^2)y' y = (1 y^2)v y$. This gives the system $\begin{cases} y' = v \\ v' = (1 y^2)v y \end{cases}$
- (b) The iteration for Euler's method is given by $t_{k+1} = t_k + .1$, $y_{k+1} = y_k + v_k \cdot .1$, $v_{k+1} = v_k + ((1 y_k^2)v_k y_k) \cdot .1$. This yields the following table:

	k	t_k	y_k	v_k
	0	0	0	1
	1	.1	.1	1.1
	2	.2	.21	1.20
	3	.3	.330	1.292
	4	.4	.459	1.374
	5	.5	.597	1.437
	6	.6	.740	1.470
	7	.7	.888	1.462
	8	.8	1.034	1.405
	9	.9	1.174	1.292
	10	1.0	1.303	1.126

So that $y(1) \approx 1.303$.