Midterm 2 Practice Tim Smits

- 1. For the following statements, indicate if they are true or false.
 - (a) If A = QR is the QR-factorization of A, then $AA^t = RR^t$
 - (b) Let Proj_S be an orthogonal projection onto some subspace S of \mathbb{R}^n . If P is the matrix of this projection, then P is orthogonal.
 - (c) If $T : \mathbb{R}^8 \to \mathbb{R}^5$ is a linear transformation such that $\dim(\ker(T)^{\perp}) = 3$, then T is surjective.
 - (d) If A is an $n \times n$ matrix with ||Au|| = 1 for all unit vectors $u \in \mathbb{R}^n$, then A is orthogonal.
- 2. Give an example of the following concepts.
 - (a) A 4×4 matrix A with Im(A) = ker(A).
 - (b) A 4 × 4 matrix A with non-zero entries such that $\text{Im}(A)^{\perp} = \text{ker}(A)$.
 - (c) A 3×3 matrix A with non-zero entries such that A is orthogonal and $A = A^t$.
- 3. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation T(x, y) = (x + 2y, 4x + 3y), and let A be the matrix of T with respect to the standard basis.
 - (a) Is there a basis β of \mathbb{R}^2 such $[T]_{\beta} = \begin{pmatrix} 3 & -1 \\ -3 & 1 \end{pmatrix}$? If so, find one. If not, explain why.

(b) Is there a basis β of \mathbb{R}^2 such that $[T]_{\beta} = \begin{pmatrix} 5 & 0 \\ 0 & -1 \end{pmatrix}$? If so, find one. If not, explain why.

- 4. Let v and w be vectors in \mathbb{R}^2 .
 - (a) Prove that $||v+w||^2 + ||v-w||^2 = 2||v||^2 + 2||w||^2$. What is a geometric interpretation of this equation? Does your proof still work in \mathbb{R}^n ? (if not, find one that does!)
 - (b) Show that $v \cdot w = \frac{1}{4}(\|v+w\|^2 \|v-w\|^2)$. Again, your proof should hold in \mathbb{R}^n . (This says angles can be defined in terms of length!)
 - (c) Suppose that ||v w|| = 3, ||v|| = 2, and ||w|| = 5. What is ||v + w||?
 - (d) Suppose that we didn't know ||v w|| = 3. What are the minimum and maximum possible values for ||v + w||? When does equality hold in each case?
 - (e) Give examples of vectors v, w with non-zero entries that satisfy the conditions of c).
- 5. Let A, B be $n \times n$ matrices with $B^t A = 0$.
 - (a) Show that $\text{Im}(A) \perp \text{Im}(B)$.
 - (b) Let P be an $n \times n$ matrix with $P^2 = P$. Prove that Im(I P) = ker(P).
 - (c) Now suppose that $P^2 = P$ and $P = P^t$. Show that $\text{Im}(P) \perp \text{ker}(P)$.

6. Let
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
.

(a) Compute the QR factorization of A.

(b) Let M be an $n \times m$ matrix with rank(M) = m. Suppose that M = QR is the QR-decomposition of M, and x^* is the least squares solution to Mx = b. Write x^* in terms of Q and R. (This relates the seemingly disjoint sections 5.2 and 5.4)

(c) With
$$b = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
, use part b) to compute the least squares solution x^* to $Ax = b$.

7. Let
$$A = \begin{pmatrix} 1 & -1 & \sqrt{2} \\ 1 & -1 & \sqrt{2} \\ 1 & -1 & \sqrt{2} \end{pmatrix}$$
 and $b = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

/ 1)

- (a) Find orthonormal bases for Im(A) and ker(A).
- (b) Minimize ||Ax b|| such that $x \in \mathbb{R}^3$, and find a vector x such that ||Ax b|| achieves this minimal value.
- (c) Compute P, the matrix of $\operatorname{Proj}_{S}(x)$ where $S = \ker(A)$.

8. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation with $[T]_\beta = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 3 & 3 & 5 \end{pmatrix}$, where $\beta = \{(1,1,1), (0,1,1), (0,0,1)\}$. Let A be the matrix of T with respect to the standard basis.

- (a) Compute the change of basis matrix $S_{\mathcal{E}\to\beta}$ and $[v]_{\beta}$ for v = (5, -2, 3). Use this to write v as a linear combination of the basis vectors of β .
- (b) Compute A using the change of basis formula.
- 9. (a) Let A be an $n \times m$ matrix. Prove that $\dim(\ker(A)) \dim(\ker(A^t)) = m n$.
 - (b) Let A be an $n \times n$ orthogonal matrix and B an $n \times m$ matrix. Show that $\operatorname{rank}(B^t) + \dim(\ker(AB)) = m$.
- 10. Let A be an $n \times n$ matrix and T(x) = Ax the corresponding linear transformation. Suppose that $A^n = 0$ but $A^{n-1} \neq 0$. Let $v \in \mathbb{R}^n$ such that $Av \neq 0$.
 - (a) Prove that $\beta = \{A^{n-1}v, A^{n-2}v, \dots, Av, v\}$ is a basis of \mathbb{R}^n .
 - (b) Compute $[T]_{\beta}$, the matrix of T with respect to β .
 - (c) Find a 3×3 matrix A with $A^3 = 0$ but $A^2 \neq 0$.
- Extra: Suppose that P is an $n \times n$ matrix with $P^2 = P$ and $\operatorname{Im}(P)^{\perp} = \ker(P)$. Prove that $P = P^t$. (This is the converse to 5(c). This says a projection matrix is symmetric if and only if it's an *orthogonal* projection).

- 1. (a) False; If A = QR then $A^t = R^tQ^t$ and $AA^t = QRR^tQ^t \neq RR^t$, unless Q = I. This is only possible if A is upper triangular, but obviously not all matrices are of this form.
 - (b) False; An orthogonal matrix Q satisfies $Q^t = Q^{-1}$, so in particular, is invertible. An orthogonal projection is not invertible!
 - (c) False; Since dim(ker $(T)^{\perp}$) = 3 and ker $(T)^{\perp}$ = Im (T^t) , since rank (A^t) = rank(A), this says dim(Im (T^t)) = dim(Im(T)) = 3. Since $3 \neq 5$, this says T is not surjective.
 - (d) True; any vector x can be written as $x = \|x\| \frac{x}{\|x\|}$. Then $Ax = \|x\|A(\frac{x}{\|x\|})$, so $\|Ax\| = \|x\|\|A(\frac{x}{\|x\|})\| = \|x\|$ because $\frac{x}{\|x\|}$ is a unit vector. This says A is orthogonal.
- 2. (a) By rank-nullity, if A is such a matrix, then $\operatorname{rank}(A) = 2$ and $\dim(\ker(A)) = 2$. Since $\operatorname{Im}(A)$ is spanned by the columns of A, A must have two linearly independent columns. The matrix A is determined entirely by what it does on the vectors e_1, e_2, e_3, e_4 , because Ae_i returns the *i*-th column of A. The easiest way foward is the following: pick two columns of A to be 0, say $Ae_3 = 0$ and $Ae_4 = 0$. Since $\ker(A) = \operatorname{Im}(A)$, this says $\operatorname{Im}(A) = \ker(A) = \operatorname{Span}\{e_3, e_4\}$ so we could take $Ae_1 = e_3$ and $Ae_2 = e_4$, and this would $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

work. This matrix *A* is given by
$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

(b) Geometrically, a matrix with Im(A)[⊥] = ker(A) is an orthogonal projection. Pick your favorite line L in the direction of a vector with non-zero entries, then the matrix of the orthogonal projection onto L will have the desired property (or project onto some other subspace if you so desire). For example, with L = Span{u} for u = (1/2, 1/2, 1/2, 1/2), we have P = uu^t = (1/2, 1/2, 1/2, 1/2), .

we have $P = uu^t = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}.$

- (c) Since A is orthogonal, $A^{-1} = A^t$ so this say $A^{-1} = A$, i.e. $A^2 = I$. Recall that such matrices come from reflections, so we can construct A by reflecting around any line L in the direction of a vector with non-zero entries (or reflecting around a plane if you so choose). If A is the matrix of the reflection, recall we have the relation A = 2P I, where P is the projection. For example, take $L = \text{Span}\{u\}$ where $u = (1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3})$. Then $A = 2P I = 2uu^t I = \begin{pmatrix} \frac{-1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & \frac{-1}{3} \end{pmatrix}$ has the desired property.
- 3. (a) We have $A = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$. If such a basis β existed, let $S = S_{\beta \to \mathcal{E}} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be the change of basis matrix. The change of basis formula would say $[T]_{\beta} = S^{-1}AS$, i.e. that $S[T]_{\beta} = AS$. This says $\begin{pmatrix} 3a 3b & -a + b \\ 3c 3d & -c + d \end{pmatrix} = \begin{pmatrix} a + 2c & b + 2d \\ 4a + 3c & 4b + 3d \end{pmatrix}$. Equating gives the system $\begin{cases} 3a 3b = a + 2c \\ -a + b = b + 2d \\ 3c 3d = 4a + 3c \\ -c + d = 4b + 3d \end{cases}$

The second equation says a = -2d and the third equation says $a = -\frac{3}{4}d$, so a = d = 0. The first and last equation then say $c = -\frac{3}{2}b$ and c = -4b, so b = c = 0. However, S = 0 is not a valid change of basis matrix, so this is not possible.

Alternatively, we can easily see the answer is no because changing basis does not change the rank of T. However, $\operatorname{rank}(A) = 2$ while $\operatorname{rank}([T]_{\beta}) = 1$, so no such basis exists.

(b) Doing the same approach gives the system $\begin{cases} 5a = a + 2c \\ -b = b + 2d \\ 5c = 4a + 3c \\ -d = 4b + 3d \end{cases}$

Solving gives 2a = c and b = -d, so we may pick, for example, a = 1, c = 2 and b = -1, d = 1. So $S_{\beta \to \mathcal{E}} = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}$. Since the columns of S are just the vectors in this basis β , we have $\beta = \{(1,2), (-1,1)\}$ is the desired basis.

4. (a) We have $||v+w||^2 = (v+w) \cdot (v+w) = v \cdot v + 2(v \cdot w) + w \cdot w = ||v||^2 + 2(v \cdot w) + ||w||^2$. Similarly, $||v-w||^2 = v \cdot v - 2(v \cdot w) + w \cdot w = ||v||^2 - 2(v \cdot w) + ||w||^2$ so adding gives $||v+w||^2 + ||v-w||^2 = 2||v||^2 + 2||w||^2$.

We can interpret this geometrically by letting v and w be the sides of a parallelogram, so the diagonals have length ||v + w|| and ||v - w||. This is then a statement relating the length squared of the diagonals to the length squared of the sides.

- (b) From $||v+w||^2 = (v+w) \cdot (v+w) = v \cdot v + 2(v \cdot w) + w \cdot w = ||v||^2 + 2(v \cdot w) + ||w||^2$ and $||v-w||^2 = v \cdot v 2(v \cdot w) + w \cdot w = ||v||^2 2(v \cdot w) + ||w||^2$, we subtract instead of add to find $4(v \cdot w) = ||v+w||^2 ||v-w||^2$.
- (c) Plug in to part a) to find ||v + w|| = 7.
- (d) We have $||v+w||^2 = ||v||^2 + 2(v \cdot w) + ||w||^2$, and $v \cdot w = ||v|| ||w|| \cos(\theta)$ where θ is the angle between v and w. Since $-1 \le \cos(\theta) \le 1$, we find $||v+w||^2 \le ||v||^2 + 2||v|| ||w|| + ||w||^2 = (||v|| + ||w||)^2$, so $||v+w|| \le ||v|| + ||w||$. Similarly, we find $||v+w|| \ge ||v|| ||w|||$. Using our numbers, we find $3 \le ||v+w|| \le 7$. Equality holds whenever $\cos(\theta) = \pm 1$: $\cos(\theta) = +1$ happens when v and w are parallel and in the same direction, and $\cos(\theta) = -1$ happens when v and w are parallel but in opposite directions.
- (e) Pick any two vectors v and w with v parallel to w going in the same direction that have the right lengths. For example, $v = (2/\sqrt{2}, 2/\sqrt{2})$ and $w = (5/\sqrt{2}, 5/\sqrt{2})$.
- 5. (a) If $x \in \text{Im}(A)$ and $y \in \text{Im}(B)$, write x = Av and y = Bw for some vectors v, w. Then $x \cdot y = (Av) \cdot (Bw) = w^t B^t Av = 0$ because $B^t A = 0$. This says $\text{Im}(A) \perp \text{Im}(B)$.
 - (b) If $x \in \text{Im}(I P)$, then write x = (I P)v for some v. Then $Px = P(I P)v = Pv P^2v = Pv Pv = 0$. This says $x \in \text{ker}(P)$, so $\text{Im}(I P) \subset \text{ker}(P)$. If $x \in \text{ker}(P)$, then Px = 0, so (I P)x = Ix = x says $x \in \text{Im}(I P)$, so $\text{ker}(P) \subset \text{Im}(I P)$ gives Im(I P) = ker(P).
 - (c) We have $(I-P)^t P = (I-P^t)P = (I-P)P = P P^2 = 0$. By part *a*), this says $\operatorname{Im}(I-P) \perp \operatorname{Im}(P)$. By part *b*), we have $\operatorname{Im}(I-P) = \ker(P)$, so $\operatorname{Im}(P) \perp \ker(P)$.
- 6. (a) Doing Gram-Schmidt on the columns, we have $u_1 = v_1 = (0, 0, 1, 0), v_2^{\perp} = v_2 (v_2 \cdot u_1)u_1 = v_2 u_1 = (0, 1, 0, 0)$ so $u_2 = (0, 1, 0, 0)$ and $v_3^{\perp} = v_3 (v_3 \cdot u_1)u_1 1 (v_3 \cdot u_2)u_2 = v_3 u_1 u_2 = (1, 0, 0, 0),$ so $u_3 = (1, 0, 0, 0)$. This says $Q = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. We also have $v_1 = u_1, v_2 = u_1 + u_2$ and $v_3 = u_1 + u_2 + u_3$ so $R = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.
 - (b) The least squares solution to Mx = b is given by solving $M^tMx^* = M^tb$. Since M = QR, plugging in says we need to solve $(R^tQ^t)(QR)x^* = R^tQ^tb$. Since $Q^tQ = I$, this says $R^tRx^* = R^tQ^tb$. Now, rank $(M) = \operatorname{rank}(M^tM) = \operatorname{rank}(R^tR) = \operatorname{rank}(R) = m$, so in particular, this says R is invertible. Thus, $x^* = (R^tR)^{-1}R^tQ^tb = R^{-1}Q^tb$.

(c) We have
$$R^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$
 and $Q^t = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$ so $x^* = R^{-1}Q^t b = (1, 2, -1).$

- 7. (a) It's clear that $\operatorname{Im}(A) = \operatorname{Span}\{(1,1,1)\}$ so an orthonormal basis is given by $\{(1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3})\}$. Vectors in the kernel must lie in the plane $x - y + z\sqrt{2} = 0$, so a basis of this is given by $\{(1,1,0), (2,0,-\sqrt{2})\}$. Running Gram-Schmidt on this set gives us the orthonormal basis $\{(1/\sqrt{2}, 1/\sqrt{2}, 0), (1/2, -1/2, -\sqrt{2}/2)\}.$
 - (b) The minimal value is given by $||b^{\perp}||$ where $b^{\perp} = b \operatorname{Proj}_{\operatorname{Im}(A)}(b)$. Since $\operatorname{Im}(A) = \operatorname{Span}\{u\}$ for $u = (1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3})$, we have $\operatorname{Proj}_{\operatorname{Im}(A)}(b) = (b \cdot u)u = (1/3, 1/3, 1/3)$, so $b^{\perp} = (1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3})$ (2/3, -1/3, -1/3) gives $||b^{\perp}|| = 2/3$. To find a minimizer, we find a least squares solution. We need to solve $A^t A x^* = A^t b$, which is equivalent to solving $\begin{pmatrix} 3 & -3 & 2\sqrt{2} \\ -3 & 3 & -3\sqrt{2} \\ 3\sqrt{2} & -3\sqrt{2} & 6 \end{pmatrix} x^* =$

 $\begin{pmatrix} 1\\ -1\\ \sqrt{2} \end{pmatrix}$. Using row reduction to solve the system, we see $x^* = (4/3, 1, 0)$ is a choice works.

(c) The matrix P is given by $P = u_1 u_1^t + u_2 u_2^t$ where u_1 and u_2 are the vectors in the

orthonormal basis of ker(A) from part a). We then find $P = \begin{pmatrix} \frac{3}{4} & \frac{1}{4} & -\frac{\sqrt{2}}{4} \\ \frac{1}{4} & \frac{3}{4} & \frac{\sqrt{2}}{4} \\ -\frac{\sqrt{2}}{\sqrt{2}} & \frac{\sqrt{2}}{4} & \frac{1}{2} \end{pmatrix}$.

8. (a) We have $S_{\mathcal{E}\to\beta} = (S_{\beta\to\mathcal{E}})^{-1}$ where $S_{\beta\to\mathcal{E}} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$. Inverting says $S_{\beta\to\mathcal{E}} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$. Recall that $[v]_{\beta} = S_{\mathcal{E}\to\beta}v$, so we find $[v]_{\beta} = (5, -7, 5)$. This then

5(1,1,1) - 7(0,1,1) + 5(0,0,1) by reading off the coordinates.

- (b) The change of basis formula says

$$A = S_{\beta \to \mathcal{E}}[T]_{\beta} S_{\mathcal{E} \to \beta} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 3 & 3 & 5 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{pmatrix}.$$

- (a) By rank-nullity, $\operatorname{rank}(A) + \dim(\ker(A)) = m$ and $\operatorname{rank}(A^t) + \dim(\ker(A^t)) = n$. Since 9. $\operatorname{rank}(A) = \operatorname{rank}(A^t)$, subtracting says $\dim(\ker(A)) - \dim(\ker(A^t)) = m - n$.
 - (b) Since $\ker(M) = \ker(M^t M)$ holds for any matrix M, setting M = AB says $\ker(AB) =$ $\ker((AB)^t(AB)) = \ker(B^tA^tAB) = \ker(B^tB) = \ker(B)$ because A is orthogonal. Since $\operatorname{rank}(B^t) = \operatorname{rank}(B)$, we see $\operatorname{rank}(B^t) + \dim(\ker(AB)) = \operatorname{rank}(B) + \dim(\ker(B)) = m$ by rank-nullity.

Alternatively, A is invertible since A is orthogonal, so we have $\ker(AB) = \ker(B)$ because $ABx = 0 \iff Bx = 0$ because we can multiply by A or A^{-1} accordingly. We then proceed the same way.

10. (a) We show that β is linearly independent, and then it's a basis. Suppose that $c_{n-1}A^{n-1}v +$ $\ldots + c_1 Av + c_0 v = 0$. Multiply through by A^{n-1} , so that all terms die off except the last, and we are left with $c_0 A^{n-1}v = 0$. Since $A^{n-1}v \neq 0$ by assumption, this says $c_0 = 0$. We then see that multiplying by A^{n-2} will show that $c_1 = 0$. Repeating this process will show all $c_i = 0$, so that β is a linearly independent set.

(b) Recall that
$$[T]_{\beta} = \begin{pmatrix} | & | & | & | \\ [T(v_1)]_{\beta} & [T(v_2)]_{\beta} & \dots & [T(v_n)]_{\beta} \end{pmatrix}$$
 where $\beta = \{v_1, \dots, v_n\}$. Here

we take
$$v_i = A^{n-i}v$$
, so $T(v_i) = A(A^{n-i}v) = A^{n-(i-1)}v$. This says $T(v_1) = 0$ and
 $T(v_i) = v_{i-1}$ for $2 \le i \le n$, so that $[T(v_1)]_{\beta} = 0$ if $i = 1$ and $[T(v_i)]_{\beta} = e_{i-1}$ for
 $2 \le i \le n$. This then says $[T]_{\beta} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}$.
(c) The previous part says $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ works.

Extra: Since $\operatorname{Im}(P) \perp \ker(P)$ and $\ker(P) = \operatorname{Im}(I-P)$, this says $\operatorname{Im}(P) \perp \operatorname{Im}(I-P)$. So $(Px) \cdot ((I-P)y) = 0$ for all $x, y \in \mathbb{R}^n$. This says $((I-P)y)^t Px = y^t (I-P^t) Px = ((I-P^t)Px) \cdot y = 0$ for all x, y. In particular, choosing $y = (I-P^t)Px$ says $||(I-P^t)Px||^2 = 0$ for all $x \in \mathbb{R}^n$, so that $(I-P^t)P = 0$. This says $P = P^t P$, and taking a transpose says $P^t = P^t P$ so that $P = P^t$ as desired.