Midterm 2 Practice
Tim Smits

1. For the following statements, indicate if they are true or false.

(a) If A= QR is the QR-factorization of A, then AA* = RR!

(b) Let Projg be an orthogonal projection onto some subspace S of R™. If P is the matrix
of this projection, then P is orthogonal.

() If T : R® — R5 is a linear transformation such that dim(ker(7)+) = 3, then T is
surjective.

(d) If Ais an n x n matrix with || Au|| = 1 for all unit vectors v € R™, then A is orthogonal.

2. Give an example of the following concepts.
(a) A 4 x4 matrix A with Im(A) = ker(A).
(b) A 4 x 4 matrix A with non-zero entries such that Im(A)* = ker(A).

(¢) A 3 x 3 matrix A with non-zero entries such that A is orthogonal and A = A".

3. Let T : R? — R? be the linear transformation T'(x,y) = (2 + 2y, 4x + 3y), and let A be the
matrix of T" with respect to the standard basis.
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(a) Is there a basis 3 of R? such [T]g = ( )? If so, find one. If not, explain why.

(b) Is there a basis 8 of R? such that [T]g = < )7 If so, find one. If not, explain why.

4. Let v and w be vectors in R?.
(a) Prove that ||v+wl||? +|Jv —w||? = 2|[v||? + 2||w||?>. What is a geometric interpretation of
this equation? Does your proof still work in R"™? (if not, find one that does!)

(b) Show that v-w = 1(|lv + w||? — [|v — w||?). Again, your proof should hold in R™. (This
says angles can be defined in terms of length!)

(¢) Suppose that ||v —w| =3, ||v|| = 2, and ||w| = 5. What is ||v+ w]|?

(d) Suppose that we didn’t know ||v — w|| = 3. What are the minimum and maximum
possible values for ||v + w||? When does equality hold in each case?

(e) Give examples of vectors v, w with non-zero entries that satisfy the conditions of c).
5. Let A, B be n x n matrices with BfA = 0.
(a) Show that Im(A) L Im(B).

(b) Let P be an n x n matrix with P? = P. Prove that Im(/ — P) = ker(P).
(c) Now suppose that P? = P and P = P?. Show that Im(P) L ker(P).

0 0 1
0 1 1
6. Let A= 111
0 0 O

(a) Compute the QR factorization of A.



(b) Let M be an n x m matrix with rank(M) = m. Suppose that M = QR is the QR-
decomposition of M, and z* is the least squares solution to Mx = b. Write x* in terms
of @ and R. (This relates the seemingly disjoint sections 5.2 and 5.4)
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(¢c) With b= , use part b) to compute the least squares solution z* to Az = b.
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(a) Find orthonormal bases for Im(A) and ker(A).

(b) Minimize ||Az — b|| such that z € R3, and find a vector x such that ||Az — b|| achieves
this minimal value.

(¢) Compute P, the matrix of Projg(z) where S = ker(A).

0 0
8. Let T : R® — R3 be the linear transformation with [Tz = 2 0], where 8 =
3 5
e

{(1,1,1),(0,1,1),(0,0,1)}. Let A be the matrix of T" with respect to the standard basis.
(a) Compute the change of basis matrix Sg_,5 and [v] for v = (5, -2, 3). Use this to write

v as a linear combination of the basis vectors of 5.

(b) Compute A using the change of basis formula.

9. (a) Let A be an n x m matrix. Prove that dim(ker(A)) — dim(ker(A?)) = m — n.
(b) Let A be an n x n orthogonal matrix and B an n X m matrix. Show that rank(B*) +
dim(ker(AB)) = m.

10. Let A be an n x n matrix and T'(z) = Az the corresponding linear transformation. Suppose
that A" =0 but A"~! # 0. Let v € R" such that Av # 0.
(a) Prove that 8 = {A" 1v, A" 2v,..., Av,v} is a basis of R".
(b) Compute [T]g, the matrix of T with respect to (.
(c) Find a 3 x 3 matrix A with A% =0 but 4% # 0.
Extra: Suppose that P is an n x n matrix with P2 = P and Im(P)* = ker(P). Prove that P = P*.

(This is the converse to 5(¢). This says a projection matrix is symmetric if and only if it’s an
orthogonal projection).



Solutions

1.

(a)

False; If A = QR then A* = R'Q? and AA* = QRR'Q! # RR!, unless Q = I. This is
only possible if A is upper triangular, but obviously not all matrices are of this form.

False; An orthogonal matrix @ satisfies Q' = Q~', so in particular, is invertible. An
orthogonal projection is not invertible!

False; Since dim(ker(T)*) = 3 and ker(T)* = Im(T"), since rank(A?) = rank(A), this
says dim(Im(7"*)) = dim(Im(7")) = 3. Since 3 # 5, this says 7' is not surjective.

True; any vector x can be written as « = ||z||%;. Then Az = ||z||A(7%), so ||Az| =
[E] [E]

||:U|‘||A(ﬁ)” = ||z|| because Tt is a unit vector. This says A is orthogonal.

By rank-nullity, if A is such a matrix, then rank(A) = 2 and dim(ker(A)) = 2. Since
Im(A) is spanned by the columns of A, A must have two linearly independent columns.
The matrix A is determined entirely by what it does on the vectors eq, e, e3, e4, because
Ae; returns the i-th column of A. The easiest way foward is the following: pick two
columns of A to be 0, say Aes = 0 and Aes = 0. Since ker(A) = Im(A), this says
Im(A) = ker(A) = Span{es, e4} so we could take Ae; = e3 and Aey = e4, and this would

work. This matrix A is given by

Geometrically, a matrix with Im(A4)* = ker(A) is an orthogonal projection. Pick your

favorite line L in the direction of a vector with non-zero entries, then the matrix of the

orthogonal projection onto L will have the desired property (or project onto some other

subspace if you so desire). For example, with L = Span{u} for u = (1/2,1/2,1/2,1/2),
1 101

we have P = uu! =
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Since A is orthogonal, A~! = A so this say A~! = A, i.e. A2 = I. Recall that such

matrices come from reflections, so we can construct A by reflecting around any line L

in the direction of a vector with non-zero entries (or reflecting around a plane if you so

choose). If A is the matrix of the reflection, recall we have the relation A = 2P —1I, where

P is the projection. For example, take L = Span{u} where u = (1/+/3,1/v/3,1/V/3).
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Then A=2P — I =2uut — I = % ?1 % has the desired property.
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We have A = 4 3) If such a basis § existed, let S = Sge = ¢ d be the

change of basis matrix. The change of basis formula would say [T]g = S™!AS, i.e. that

_ : 3a—3b —a+b\ _(a+2c b+2d
S[T)p = AS. This says (30—3d —c—i—d) - (4a+30 4b+ 3d

3a—3b=a+2¢c

). Equating gives the

—a+b=b+2d
system
3c—3d =4a+ 3c
—c+d=4b+3d
The second equation says a = —2d and the third equation says a = —%d, soa=d=0.

The first and last equation then say ¢ = f%b and ¢ = —4b, s0o b = ¢ = 0. However, S =0
is not a valid change of basis matrix, so this is not possible.

Alternatively, we can easily see the answer is no because changing basis does not change
the rank of 7. However, rank(A) = 2 while rank([T]5) = 1, so no such basis exists.



S5a =a+ 2c

—b=b+2d
(b) Doing the same approach gives the system +
5¢ = 4a + 3¢
—d = 4b+ 3d
Solving gives 2a = ¢ and b = —d, so we may pick, for example, a = 1, ¢ = 2 and
b=-1,d=1. So Sg¢ = ( ) Since the columns of S are just the vectors in this

basis /3, we have 8 = {(1,2),(—1,1)} is the desired basis.

(a) We have |[[v+w|?=(v+w) - (v+w)=v-v+2v-w)+w-w=||v]|?+2(v-w)+ ||w]>.
Similarly, |[v —w||? =v-v —2(v-w) +w-w = ||v||? = 2(v - w) + ||w||? so adding gives
lv+wl? +[lv — wl]? = 2[|vl* + 2[w]|*.

We can interpret this geometrically by letting v and w be the sides of a parallelogram,
so the diagonals have length ||v +w|| and ||v —w||. This is then a statement relating the
length squared of the diagonals to the length squared of the sides.

(b) From ||lv+w|]?> = (v+w) - (v+w)=v-v+2v-w)+w-w = ||v]|* +2(v-w)+ |w|? and
lv—w|?>=v-v—2w -w)+w-w=|v||? —2(v-w)+ ||w||?, we subtract instead of add
to find 4(v - w) = [|v + wl||? — ||v — w||*.

(¢) Plug in to part a) to find |Jv +w| = 7.

(d) We have |[v+wl||? = ||v]|>+2(v-w) + ||w||?, and v-w = ||v||||w]| cos(§) where 0 is the angle
between v and w. Since —1 < cos(f) < 1, we find ||v + wl|? < [|v]|? + 2|]v||||w| + ||w]|? =

([l +lwl))?, so lotwl[l < [Jv]|+[wl]|. Similarly, we find [Jv+w]| > |[Jo[|—[|w]]|. Using our

numbers, we find 3 < |lv + w|| < 7. Equality holds whenever cos(f) = +1: cos(d) = +1
happens when v and w are parallel and in the same direction, and cos(§) = —1 happens
when v and w are parallel but in opposite directions.

(e) Pick any two vectors v and w with v parallel to w going in the same direction that have
the right lengths. For example, v = (2/\/5, 2/\/5) and w = (5/\/5, 5/\/5)

(a) If z € Tm(A) and y € Im(B), write z = Av and y = Bw for some vectors v, w. Then
z-y = (Av) - (Bw) = w'B'Av = 0 because B'A = 0. This says Im(A) L Im(B).

(b) If z € Im( — P), then write x = (I — P)v for some v. Then Px = P(I — P)v =
Pv — P?v = Pv— Pv=0. This says = € ker(P), so Im(I — P) C ker(P). If z € ker(P),
then Pz =0, so (I — P)x = Iz = x says « € Im(I — P), so ker(P) C Im(I — P) gives
Im(I — P) = ker(P).

(c) We have (I — P)!P = (I — PY)P = (I — P)P = P — P? = 0. By part a), this says
Im(I — P) L Im(P). By part b), we have Im(I — P) = ker(P), so Im(P) L ker(P).

(a) Doing Gram-Schmidt on the columns, we have u; = v; = (0,0,1,0), vy = vy — (vq -
uy)uy = vy —uy = (0,1,0,0) s0 ug = (0,1,0,0) and v3- = vz — (v3-u1)u)l — (v3-ug)ug =

We also have

u

1
vy —u; —uz = (1,0,0,0), so ug = (1,0,0,0). This says @ = 8
0

0 0
0 1
1 0
0 0
1 1 1
V1 = U1, Vg = U1 + ug and vz = uq + us + uz so R = 1)

(b) The least squares solution to Mz = b is given by solving M*Mz* = M'bh. Since M = QR,
plugging in says we need to solve (R'Q?)(QR)xz* = R'Q!. Since Q'Q = I, this says
R'Rz* = R'Q'y. Now, rank(M) = rank(M'M) = rank(R'R) = rank(R) = m, so in
particular, this says R is invertible. Thus, z* = (R'R)"'R'Q'b = R~1Q'b.



10.

1 -1 0 0
() Wehave R"-!= [0 1 —1]andQ'= {0
0 1

1 0
0 0] sox*=R1Q%=(1,2-1).
0 1 0 0

S = O

(a) Tt’s clear that Im(A) = Span{(1, 1, 1)} so an orthonormal basis is given by {(1/v/3,1/+/3,1/v/3)}.

Vectors in the kernel must lie in the plane 2 — y 4+ 2v/2 = 0, so a basis of this is given
by {(1,1,0), (2,0, —/2)}. Running Gram-Schmidt on this set gives us the orthonormal
basis {(1/v2,1/v2,0), (1/2,-1/2,—V2/2)}.

(b) The minimal value is given by ||b* || where b+ = b—Projip(4)(b). Since Im(A) = Span{u}
for u = (1/v/3,1/V/3,1/V/3), we have Projimay(b) = (b-uw)u = (1/3,1/3,1/3), so bt =
(2/3,—1/3,—1/3) gives ||b*|| = 2/3. To find a minimizer, we find a least squares solution.

3 -3 2V2
We need to solve A* Az* = A'b, which is equivalent to solving [ —3 3 —3V2 | z* =
32 -3v2 6
1
—1 | . Using row reduction to solve the system, we see z* = (4/3,1,0) is a choice works.
V2
(c) The matrix P is given by P = wju! + usul where u; and uy are the vectors in the
3 2
L1 s
orthonormal basis of ker(A) from part a). We then find P = 3 3 %
¥z V2 1
i 1 2
1 0 0
(a) We have Sg5 = (Sge)™! where Sse = |1 1 0. Inverting says Sge =
1 1 1
1 0 O
—1 1 0. Recall that [v]g = Se_,gv, so we find [v]g = (5,—7,5). This then
0 -1 1

says v = 5(1,1,1) — 7(0,1,1) + 5(0, 0, 1) by reading off the coordinates.
(b) The change of basis formula says
1 0 0 1 0 0 0 1 0 0
AZSgHg[T]gSgHBZ 1 1 0 1 2 0 -1 0]=10 2 0

1 1 1 3 3 5 0 -1 1 0 0 5

(a) By rank-nullity, rank(A) + dim(ker(A4)) = m and rank(A*) + dim(ker(A?)) = n. Since
rank(A) = rank(A"), subtracting says dim(ker(A)) — dim(ker(A")) = m — n.

(b) Since ker(M) = ker(M*M) holds for any matrix M, setting M = AB says ker(AB) =
ker((AB)*(AB)) = ker(B'A*AB) = ker(B'B) = ker(B) because A is orthogonal. Since
rank(B') = rank(B), we see rank(B?) + dim(ker(AB)) = rank(B) + dim(ker(B)) = m
by rank-nullity.

Alternatively, A is invertible since A is orthogonal, so we have ker(AB) = ker(B) because
ABx = 0 <= Bz = 0 because we can multiply by A or A~! accordingly. We then
proceed the same way.

(a) We show that 3 is linearly independent, and then it’s a basis. Suppose that ¢, 1 A" tv+
...+ c1Av+cov = 0. Multiply through by A”~!, so that all terms die off except the last,
and we are left with coA" 'v = 0. Since A" !v # 0 by assumption, this says cy = 0.
We then see that multiplying by A”~2 will show that ¢; = 0. Repeating this process will
show all ¢; = 0, so that 3 is a linearly independent set.

(b) Recall that [T)g = | [T(v1)lg [T(v2)lg ... [T(vn)lg | where 8 = {v1,...,v,}. Here



we take v; = A" ', so T(v;)

T(v;) = vj—q for 2 < i < m, so t

2 <4 < n. This then says [T]z =

(¢) The previous part says A =

A(A" ) = A~ @=Dy. This says T(v1) = 0 and

hat [T'(v1)]g = 0 if ¢ = 1 and [T'(v;)]g = e;—1 for
01 0 . 0
0 01 0
0 0 0 0
0 0 0 1
0 0 0 0
0
1] works
0

Extra: Since Im(P) L ker(P) and ker(P) = Im(I — P), this says Im(P) L Im(I — P). So (Pz)-(({ —
P)y) =0 for all z,y € R™. This says ((I — P)y)!Pz = y'(I — P")Pz = ((I — P")Pz) -y =0

for all x,y. In particular, choosing y =

(I — PY)Pz says ||[(I — P")Pz||> =0 for all z € R,

so that (I — P*)P = 0. This says P = P'P, and taking a transpose says P! = P'P so that

P = P? as desired.



