
Midterm 2 Practice
Tim Smits

1. For the following statements, indicate if they are true or false.

(a) If A = QR is the QR-factorization of A, then AAt = RRt

(b) Let ProjS be an orthogonal projection onto some subspace S of Rn. If P is the matrix
of this projection, then P is orthogonal.

(c) If T : R8 → R5 is a linear transformation such that dim(ker(T )⊥) = 3, then T is
surjective.

(d) If A is an n× n matrix with ‖Au‖ = 1 for all unit vectors u ∈ Rn, then A is orthogonal.

2. Give an example of the following concepts.

(a) A 4× 4 matrix A with Im(A) = ker(A).

(b) A 4× 4 matrix A with non-zero entries such that Im(A)⊥ = ker(A).

(c) A 3× 3 matrix A with non-zero entries such that A is orthogonal and A = At.

3. Let T : R2 → R2 be the linear transformation T (x, y) = (x + 2y, 4x + 3y), and let A be the
matrix of T with respect to the standard basis.

(a) Is there a basis β of R2 such [T ]β =

(
3 −1
−3 1

)
? If so, find one. If not, explain why.

(b) Is there a basis β of R2 such that [T ]β =

(
5 0
0 −1

)
? If so, find one. If not, explain why.

4. Let v and w be vectors in R2.

(a) Prove that ‖v+w‖2 + ‖v−w‖2 = 2‖v‖2 + 2‖w‖2. What is a geometric interpretation of
this equation? Does your proof still work in Rn? (if not, find one that does!)

(b) Show that v · w = 1
4 (‖v + w‖2 − ‖v − w‖2). Again, your proof should hold in Rn. (This

says angles can be defined in terms of length!)

(c) Suppose that ‖v − w‖ = 3, ‖v‖ = 2, and ‖w‖ = 5. What is ‖v + w‖?
(d) Suppose that we didn’t know ‖v − w‖ = 3. What are the minimum and maximum

possible values for ‖v + w‖? When does equality hold in each case?

(e) Give examples of vectors v, w with non-zero entries that satisfy the conditions of c).

5. Let A,B be n× n matrices with BtA = 0.

(a) Show that Im(A) ⊥ Im(B).

(b) Let P be an n× n matrix with P 2 = P . Prove that Im(I − P ) = ker(P ).

(c) Now suppose that P 2 = P and P = P t. Show that Im(P ) ⊥ ker(P ).

6. Let A =


0 0 1
0 1 1
1 1 1
0 0 0

.

(a) Compute the QR factorization of A.
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(b) Let M be an n × m matrix with rank(M) = m. Suppose that M = QR is the QR-
decomposition of M , and x∗ is the least squares solution to Mx = b. Write x∗ in terms
of Q and R. (This relates the seemingly disjoint sections 5.2 and 5.4)

(c) With b =


−1
1
0
1

, use part b) to compute the least squares solution x∗ to Ax = b.

7. Let A =

1 −1
√

2

1 −1
√

2

1 −1
√

2

 and b =

1
0
0

.

(a) Find orthonormal bases for Im(A) and ker(A).

(b) Minimize ‖Ax − b‖ such that x ∈ R3, and find a vector x such that ‖Ax − b‖ achieves
this minimal value.

(c) Compute P , the matrix of ProjS(x) where S = ker(A).

8. Let T : R3 → R3 be the linear transformation with [T ]β =

1 0 0
1 2 0
3 3 5

, where β =

{(1, 1, 1), (0, 1, 1), (0, 0, 1)}. Let A be the matrix of T with respect to the standard basis.

(a) Compute the change of basis matrix SE→β and [v]β for v = (5,−2, 3). Use this to write
v as a linear combination of the basis vectors of β.

(b) Compute A using the change of basis formula.

9. (a) Let A be an n×m matrix. Prove that dim(ker(A))− dim(ker(At)) = m− n.

(b) Let A be an n × n orthogonal matrix and B an n ×m matrix. Show that rank(Bt) +
dim(ker(AB)) = m.

10. Let A be an n× n matrix and T (x) = Ax the corresponding linear transformation. Suppose
that An = 0 but An−1 6= 0. Let v ∈ Rn such that Av 6= 0.

(a) Prove that β = {An−1v,An−2v, . . . , Av, v} is a basis of Rn.

(b) Compute [T ]β , the matrix of T with respect to β.

(c) Find a 3× 3 matrix A with A3 = 0 but A2 6= 0.

Extra: Suppose that P is an n× n matrix with P 2 = P and Im(P )⊥ = ker(P ). Prove that P = P t.
(This is the converse to 5(c). This says a projection matrix is symmetric if and only if it’s an
orthogonal projection).
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Solutions

1. (a) False; If A = QR then At = RtQt and AAt = QRRtQt 6= RRt, unless Q = I. This is
only possible if A is upper triangular, but obviously not all matrices are of this form.

(b) False; An orthogonal matrix Q satisfies Qt = Q−1, so in particular, is invertible. An
orthogonal projection is not invertible!

(c) False; Since dim(ker(T )⊥) = 3 and ker(T )⊥ = Im(T t), since rank(At) = rank(A), this
says dim(Im(T t)) = dim(Im(T )) = 3. Since 3 6= 5, this says T is not surjective.

(d) True; any vector x can be written as x = ‖x‖ x
‖x‖ . Then Ax = ‖x‖A( x

‖x‖ ), so ‖Ax‖ =

‖x‖‖A( x
‖x‖ )‖ = ‖x‖ because x

‖x‖ is a unit vector. This says A is orthogonal.

2. (a) By rank-nullity, if A is such a matrix, then rank(A) = 2 and dim(ker(A)) = 2. Since
Im(A) is spanned by the columns of A, A must have two linearly independent columns.
The matrix A is determined entirely by what it does on the vectors e1, e2, e3, e4, because
Aei returns the i-th column of A. The easiest way foward is the following: pick two
columns of A to be 0, say Ae3 = 0 and Ae4 = 0. Since ker(A) = Im(A), this says
Im(A) = ker(A) = Span{e3, e4} so we could take Ae1 = e3 and Ae2 = e4, and this would

work. This matrix A is given by


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

.

(b) Geometrically, a matrix with Im(A)⊥ = ker(A) is an orthogonal projection. Pick your
favorite line L in the direction of a vector with non-zero entries, then the matrix of the
orthogonal projection onto L will have the desired property (or project onto some other
subspace if you so desire). For example, with L = Span{u} for u = (1/2, 1/2, 1/2, 1/2),

we have P = uut =

 1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

.

(c) Since A is orthogonal, A−1 = At so this say A−1 = A, i.e. A2 = I. Recall that such
matrices come from reflections, so we can construct A by reflecting around any line L
in the direction of a vector with non-zero entries (or reflecting around a plane if you so
choose). If A is the matrix of the reflection, recall we have the relation A = 2P−I, where
P is the projection. For example, take L = Span{u} where u = (1/

√
3, 1/
√

3, 1/
√

3).

Then A = 2P − I = 2uut − I =

−13 2
3

2
3

2
3

−1
3

2
3

2
3

2
3

−1
3

 has the desired property.

3. (a) We have A =

(
1 2
4 3

)
. If such a basis β existed, let S = Sβ→E =

(
a b
c d

)
be the

change of basis matrix. The change of basis formula would say [T ]β = S−1AS, i.e. that

S[T ]β = AS. This says

(
3a− 3b −a+ b
3c− 3d −c+ d

)
=

(
a+ 2c b+ 2d
4a+ 3c 4b+ 3d

)
. Equating gives the

system


3a− 3b = a+ 2c

−a+ b = b+ 2d

3c− 3d = 4a+ 3c

−c+ d = 4b+ 3d

The second equation says a = −2d and the third equation says a = − 3
4d, so a = d = 0.

The first and last equation then say c = − 3
2b and c = −4b, so b = c = 0. However, S = 0

is not a valid change of basis matrix, so this is not possible.

Alternatively, we can easily see the answer is no because changing basis does not change
the rank of T . However, rank(A) = 2 while rank([T ]β) = 1, so no such basis exists.
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(b) Doing the same approach gives the system


5a = a+ 2c

−b = b+ 2d

5c = 4a+ 3c

−d = 4b+ 3d
Solving gives 2a = c and b = −d, so we may pick, for example, a = 1, c = 2 and

b = −1,d = 1. So Sβ→E =

(
1 −1
2 1

)
. Since the columns of S are just the vectors in this

basis β, we have β = {(1, 2), (−1, 1)} is the desired basis.

4. (a) We have ‖v+w‖2 = (v+w) · (v+w) = v · v+ 2(v ·w) +w ·w = ‖v‖2 + 2(v ·w) + ‖w‖2.
Similarly, ‖v − w‖2 = v · v − 2(v · w) + w · w = ‖v‖2 − 2(v · w) + ‖w‖2 so adding gives
‖v + w‖2 + ‖v − w‖2 = 2‖v‖2 + 2‖w‖2.

We can interpret this geometrically by letting v and w be the sides of a parallelogram,
so the diagonals have length ‖v+w‖ and ‖v−w‖. This is then a statement relating the
length squared of the diagonals to the length squared of the sides.

(b) From ‖v+w‖2 = (v+w) · (v+w) = v · v+ 2(v ·w) +w ·w = ‖v‖2 + 2(v ·w) + ‖w‖2 and
‖v − w‖2 = v · v − 2(v · w) + w · w = ‖v‖2 − 2(v · w) + ‖w‖2, we subtract instead of add
to find 4(v · w) = ‖v + w‖2 − ‖v − w‖2.

(c) Plug in to part a) to find ‖v + w‖ = 7.

(d) We have ‖v+w‖2 = ‖v‖2+2(v ·w)+‖w‖2, and v ·w = ‖v‖‖w‖ cos(θ) where θ is the angle
between v and w. Since −1 ≤ cos(θ) ≤ 1, we find ‖v+w‖2 ≤ ‖v‖2 + 2‖v‖‖w‖+ ‖w‖2 =

(‖v‖+‖w‖)2, so ‖v+w‖ ≤ ‖v‖+‖w‖. Similarly, we find ‖v+w‖ ≥
∣∣∣∣‖v‖−‖w‖∣∣∣∣. Using our

numbers, we find 3 ≤ ‖v + w‖ ≤ 7. Equality holds whenever cos(θ) = ±1: cos(θ) = +1
happens when v and w are parallel and in the same direction, and cos(θ) = −1 happens
when v and w are parallel but in opposite directions.

(e) Pick any two vectors v and w with v parallel to w going in the same direction that have
the right lengths. For example, v = (2/

√
2, 2/
√

2) and w = (5/
√

2, 5/
√

2).

5. (a) If x ∈ Im(A) and y ∈ Im(B), write x = Av and y = Bw for some vectors v, w. Then
x · y = (Av) · (Bw) = wtBtAv = 0 because BtA = 0. This says Im(A) ⊥ Im(B).

(b) If x ∈ Im(I − P ), then write x = (I − P )v for some v. Then Px = P (I − P )v =
Pv − P 2v = Pv − Pv = 0. This says x ∈ ker(P ), so Im(I − P ) ⊂ ker(P ). If x ∈ ker(P ),
then Px = 0, so (I − P )x = Ix = x says x ∈ Im(I − P ), so ker(P ) ⊂ Im(I − P ) gives
Im(I − P ) = ker(P ).

(c) We have (I − P )tP = (I − P t)P = (I − P )P = P − P 2 = 0. By part a), this says
Im(I − P ) ⊥ Im(P ). By part b), we have Im(I − P ) = ker(P ), so Im(P ) ⊥ ker(P ).

6. (a) Doing Gram-Schmidt on the columns, we have u1 = v1 = (0, 0, 1, 0), v⊥2 = v2 − (v2 ·
u1)u1 = v2−u1 = (0, 1, 0, 0) so u2 = (0, 1, 0, 0) and v⊥3 = v3− (v3 ·u1)u)1− (v3 ·u2)u2 =

v3 − u1 − u2 = (1, 0, 0, 0), so u3 = (1, 0, 0, 0). This says Q =


0 0 1
0 1 0
1 0 0
0 0 0

. We also have

v1 = u1, v2 = u1 + u2 and v3 = u1 + u2 + u3 so R =

1 1 1
0 1 1
0 0 1

.

(b) The least squares solution to Mx = b is given by solving M tMx∗ = M tb. Since M = QR,
plugging in says we need to solve (RtQt)(QR)x∗ = RtQtb. Since QtQ = I, this says
RtRx∗ = RtQtb. Now, rank(M) = rank(M tM) = rank(RtR) = rank(R) = m, so in
particular, this says R is invertible. Thus, x∗ = (RtR)−1RtQtb = R−1Qtb.
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(c) We have R−1 =

1 −1 0
0 1 −1
0 0 1

 and Qt =

0 0 1 0
0 1 0 0
1 0 0 0

 so x∗ = R−1Qtb = (1, 2,−1).

7. (a) It’s clear that Im(A) = Span{(1, 1, 1)} so an orthonormal basis is given by {(1/
√

3, 1/
√

3, 1/
√

3)}.
Vectors in the kernel must lie in the plane x − y + z

√
2 = 0, so a basis of this is given

by {(1, 1, 0), (2, 0,−
√

2)}. Running Gram-Schmidt on this set gives us the orthonormal
basis {(1/

√
2, 1/
√

2, 0), (1/2,−1/2,−
√

2/2)}.
(b) The minimal value is given by ‖b⊥‖ where b⊥ = b−ProjIm(A)(b). Since Im(A) = Span{u}

for u = (1/
√

3, 1/
√

3, 1/
√

3), we have ProjIm(A)(b) = (b · u)u = (1/3, 1/3, 1/3), so b⊥ =

(2/3,−1/3,−1/3) gives ‖b⊥‖ = 2/3. To find a minimizer, we find a least squares solution.

We need to solveAtAx∗ = Atb, which is equivalent to solving

 3 −3 2
√

2

−3 3 −3
√

2

3
√

2 −3
√

2 6

x∗ = 1
−1√

2

. Using row reduction to solve the system, we see x∗ = (4/3, 1, 0) is a choice works.

(c) The matrix P is given by P = u1u
t
1 + u2u

t
2 where u1 and u2 are the vectors in the

orthonormal basis of ker(A) from part a). We then find P =

 3
4

1
4 −

√
2
4

1
4

3
4

√
2
4

−
√
2
4

√
2
4

1
2

.

8. (a) We have SE→β = (Sβ→E)
−1 where Sβ→E =

1 0 0
1 1 0
1 1 1

. Inverting says Sβ→E = 1 0 0
−1 1 0
0 −1 1

. Recall that [v]β = SE→βv, so we find [v]β = (5,−7, 5). This then

says v = 5(1, 1, 1)− 7(0, 1, 1) + 5(0, 0, 1) by reading off the coordinates.

(b) The change of basis formula says

A = Sβ→E [T ]βSE→β =

1 0 0
1 1 0
1 1 1

1 0 0
1 2 0
3 3 5

 1 0 0
−1 1 0
0 −1 1

 =

1 0 0
0 2 0
0 0 5

.

9. (a) By rank-nullity, rank(A) + dim(ker(A)) = m and rank(At) + dim(ker(At)) = n. Since
rank(A) = rank(At), subtracting says dim(ker(A))− dim(ker(At)) = m− n.

(b) Since ker(M) = ker(M tM) holds for any matrix M , setting M = AB says ker(AB) =
ker((AB)t(AB)) = ker(BtAtAB) = ker(BtB) = ker(B) because A is orthogonal. Since
rank(Bt) = rank(B), we see rank(Bt) + dim(ker(AB)) = rank(B) + dim(ker(B)) = m
by rank-nullity.

Alternatively, A is invertible since A is orthogonal, so we have ker(AB) = ker(B) because
ABx = 0 ⇐⇒ Bx = 0 because we can multiply by A or A−1 accordingly. We then
proceed the same way.

10. (a) We show that β is linearly independent, and then it’s a basis. Suppose that cn−1A
n−1v+

. . .+ c1Av+ c0v = 0. Multiply through by An−1, so that all terms die off except the last,
and we are left with c0A

n−1v = 0. Since An−1v 6= 0 by assumption, this says c0 = 0.
We then see that multiplying by An−2 will show that c1 = 0. Repeating this process will
show all ci = 0, so that β is a linearly independent set.

(b) Recall that [T ]β =

 p p p
[T (v1)]β [T (v2)]β . . . [T (vn)]β

p p p

 where β = {v1, . . . , vn}. Here
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we take vi = An−iv, so T (vi) = A(An−iv) = An−(i−1)v. This says T (v1) = 0 and
T (vi) = vi−1 for 2 ≤ i ≤ n, so that [T (v1)]β = 0 if i = 1 and [T (vi)]β = ei−1 for

2 ≤ i ≤ n. This then says [T ]β =



0 1 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0


.

(c) The previous part says A =

0 1 0
0 0 1
0 0 0

 works.

Extra: Since Im(P ) ⊥ ker(P ) and ker(P ) = Im(I −P ), this says Im(P ) ⊥ Im(I −P ). So (Px) · ((I −
P )y) = 0 for all x, y ∈ Rn. This says ((I − P )y)tPx = yt(I − P t)Px = ((I − P t)Px) · y = 0
for all x, y. In particular, choosing y = (I − P t)Px says ‖(I − P t)Px‖2 = 0 for all x ∈ Rn,
so that (I − P t)P = 0. This says P = P tP , and taking a transpose says P t = P tP so that
P = P t as desired.
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