
Midterm 1 Practice
Tim Smits

Vectors are written as rows to save space. Interpret them as columns.

1. For the following statements, indicate if they are true or false.

(a) The set W = {(x, y, z) ∈ R3 : x2 + y2 − z2 = 0} is a subspace of R3.

(b) For an n× n matrix A, if A2 = 0, then In +A is invertible.

(c) Suppose T : Rn → Rm is a surjective linear transformation with n ≤ m. Then T is
invertible.

(d) R2 is a subspace of R3.

2. Give an example of the following concepts.

(a) A 3 × 3 system of equations that corresponds geometrically to two overlapping planes
with a third one parallel.

(b) A 4× 3 matrix A such that the map T (~x) = A~x is injective.

(c) A basis of R3 with all basis vectors having entries 1 or −1.

(d) A 3× 3 matrix A with A2 6= I3 and A4 = I3.

3. Consider the following system of equations:


x+ 3y + 2z + t = a

2x+ 5y + 3z = a

x− z = −b
y + z = b

(a) For what values of a, b does a solution exist? How many such solutions are there?

(b) For the above values of a, b, solve the system of equations. What is a geometric descrip-
tion of the solution set?

4. Consider the following system of equations:


x+ 2y + 3z = 7

2x+ 3y + 4z = 6

4x+ 4y + 5z = 8

(a) Translate the system of equations into a matrix equation of the form A~x = ~b.

(b) Explain why the matrix A is invertible, and compute A−1. What does this tell you about
the solution set to the system?

(c) Solve the system of equations. What is a geometric description of the solution set?

5. Find all matrices B such that AB = BA, where A =

(
1 2
3 4

)
.

6. Let T : R2 → R2 be the linear transformation defined as follows. First, orthogonally project
a vector ~x onto the line y = 1√

3
x. Then, rotate counter-clockwise by an angle of π/3. Next,

reflect across the x-axis, and finally, scale by a factor of 3.

(a) Let A be the matrix of T . Let P be the matrix of the orthogonal projection, R be the
matrix of the rotation, S be the matrix of the reflection, and D be the matrix of the
scaling. Write down A in terms of D,P,R and S.
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(b) Without doing any computation, describe Im(T ) and ker(T ). Is T invertible? (Hint:
draw a picture!)

(c) Explicitly compute the matrix A, and use it to verify your answers in part (b).

7. Let S = {(1,−1, 1), (1, 4, 5), (6, 8, 10), (40, 33, 48)}.

(a) Without doing any computation, explain why S is a linearly dependent set of vectors.

(b) Write (40, 33, 48) as a linear combination of the other 3 vectors.

8. Let T : R3 → R3 be given by T (x, y, z) = (x+ y − z, 2x+ 2y − 2z, 2x+ 3y − 5z). Find bases
for Im(T ) and ker(T ), clearly stating their dimensions. Give a geometric description for each
subspace.

9. Let T : R2 → R2 be a linear transformation with T (3, 1) = (2, 3) and T (1, 2) = (9, 1). Find
the matrix A of T .

10. Let V = span{(1,−1, 3, 1), (2, 3, 4,−5)}.

(a) Find a 4× 4 matrix A with Im(A) = V .

(b) What is the relationship between the rows of A and vectors in ker(A)?

(c) For your matrix A, write down its transpose At. What does the above say is the rela-
tionship between vectors in ker(A) and vectors in Im(At)?

(d) Find ker(At). What is the relationship between ker(At) and the subspace V ?

Extra: Let A be a 2× 2 matrix.

(a) Show that ker(A) ⊆ ker(A2) and Im(A2) ⊆ Im(A).

(b) Suppose A3 = 0. Show that A2 = 0.
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Solutions

1. (a) False; W is not closed under addition. (3, 4, 5) ∈W and (5, 12, 13) ∈W but (8, 16, 18) 6∈
W .

(b) True; (In − A)(In + A) = (In + A)(In − A) = In − A2 = In says (In + A) is invertible
with inverse In −A.

(c) True; since T is surjective, this says n ≥ m, and from n ≤ m this says n = m. A
surjective map from Rn → Rn is necessarily invertible by the invertible matrix theorem.

(d) False; R2 is not even a subset of R3!

2. (a) The system of equations x + y + z = 1, 2x + 2y + 2z = 2, x + y + z = 0 is one such
example.

(b) The map T (~x) is injective if A has full rank, so pick any 4× 3 matrix A with rank 3. An

example is A =


1 0 0
0 1 0
0 0 1
0 0 0

.

(c) Take β = {(1,−1, 1), (1, 1,−1), (−1, 1, 1)}. One can check using row reduction that the

matrix A =

 1 1 −1
−1 1 1
1 −1 1

 has full rank, so the columns are linearly independent.

Since dim(R3) = 3, this says they actually form a basis.

(d) Consider a counter-clockwise rotation R by π/2 around the z-axis, which geometrically
will satisfy the desired property, so if A is the matrix of R, then this matrix will work.
To compute the matrix of the rotation, compute its action on the standard basis vectors.
R is just a normal rotation in the xy-plane, and completely fixes the z-axis, so using the
formulas for a rotation in 2D one can compute where R maps e1 and e2. We then find

A =

0 −1 0
1 0 0
0 0 1

.

3. (a) Row reduce the augmented matrix:


1 3 2 1 a
2 5 3 0 a
1 0 −1 0 −b
0 1 1 0 b

→


1 3 2 1 a
0 1 1 2 a
0 0 0 10 4a− 2b
0 0 0 0 −a+ 3b

.

We see this system is consistent if and only if a = 3b. When this is true, the augmented

matrix becomes


1 3 2 1 3b
0 1 1 2 3b
0 0 0 10 10b
0 0 0 0 0

, which has infinitely many solutions.

(b) Row reduce further:


1 3 2 1 3b
0 1 1 2 3b
0 0 0 10 10b
0 0 0 0 0

 →


1 0 −1 0 −b
0 1 1 0 b
0 0 0 1 b
0 0 0 0 0

. This says x =

−b + z, y = b − z, z is free and t = b. Any vector that solves the system is of the form
(x, y, z, t) = (−b+ z, b− z, z, b) = z(1,−1, 1, 0) + (−b, b, 0, b), for z arbitrary. Geometri-
cally, this solution set is a line in R4.

4. (a) We can write this as a matrix equation of the form

1 2 3
2 3 4
4 4 5

xy
z

 =

7
6
8

.
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(b) A is invertible because rank(A) = 3. Row reduceA to see

1 2 3
2 3 4
4 4 5

→
1 2 3

0 −1 −2
0 −4 −7

→1 2 3
0 −1 −2
0 0 1

, from which we can see A has full rank. To compute A−1, we use the

algorithm which says that RREF of the augmented matrix [A|I3] is given by [I3|A−1].

If you do the row reduction, you’ll find A−1 =

 1 −2 1
−6 7 −2
4 −4 1

. Since A is invertible,

we know the system has a unique solution.

(c) The solution is given by ~x = A−1

7
6
8

 =

 3
−16
12

. Geometrically, the solution set is

just the point (3,−16, 12).

5. WriteB =

(
a b
c d

)
. Then we want to solveAB = BA, i.e.

(
1 2
3 4

)(
a b
c d

)
=

(
a b
c d

)(
1 2
3 4

)
.

Doing the matrix multiplication, this says we want

(
a+ 2c b+ 2d
3a+ 4c 3b+ 4d

)
=

(
a+ 3b 2a+ 4b
c+ 3d 2c+ 4d

)
.

This gives us the system of equations


a+ 2c = a+ 3b

b+ 2d = 2a+ 4b

3a+ 4c = c+ 3d

3b+ 4d = 2c+ 4d

. Solving the system says d =

a+ 3
2b and c = 3

2b, with a and b free, so B =

(
a b
3
2b a+ 3

2b

)
for arbitrary a, b.

6. (a) Follow the order of composition. A = DSRP .

(b) T first projects R2 onto the line y = 1√
3
x, which is at an angle of π/6. This line is then

rotated by an angle of π/3 to become the y-axis, which is then not changed by both the
reflection and the scaling, so that Im(T ) is the y-axis. Any vector on the line orthogonal
to y = 1√

3
x through the origin is crushed to ~0 by the projection, and any vector not on

this line does not get mapped to ~0 by T (which is easy to see geometrically). This says
ker(T ) is just the line orthogonal to y = 1√

3
x, which is the line y = −

√
3x.

(c) Using all the relevant formulas, we have P =

(
3/4

√
3/4√

3/4 1/4

)
, R =

(
1/2 −

√
3/2√

3/2 1/2

)
,

S =

(
1 0
0 −1

)
, and D =

(
3 0
0 3

)
. This gives A =

(
0 0

−3
√

3/2 −3/2

)
. Im(A) is spanned

by the columns of A, which we see are just scalar multiples of each other, so it’s really
just spanned by one of them. This says Im(A) = Span{(0,−3/2)} = Span{(0, 1)}, which
is just the y-axis. Similarly, we can read off the kernel to see that ker(A) = {(x, y) :
−3
√

3x/2 = 3y/2} = {(x, y) : y = −
√

3x}, which is the desired line.

7. (a) We have a set of 4 vectors in R3, so the matrix A whose columns are formed by these
vectors is a 3×4 matrix. These vectors are linearly independent if and only if rank(A) =
4, but since rank(A) ≤ 3 and rank(A) ≤ 4 this says rank(A) < 4, which says they are
linearly dependent.

(b) We want to solve c1(1,−1, 1)+c2(1, 4, 5)+c3(6, 8, 10) = (40, 33, 48) for constants c1, c2, c3.

This is equivalent to the matrix equation

 1 1 6
−1 4 8
1 5 10

c1c2
c3

 =

40
33
48

. We can solve
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this by row reducing the augmented matrix:

 1 1 6 40
−1 4 8 33
1 5 10 48

→
1 1 6 40

0 5 14 73
0 4 4 8

→1 1 6 40
0 20 56 292
0 −20 −20 −40

 →
1 1 6 40

0 20 56 292
0 0 36 252

. The last row gives c3 = 7, which then

says 20c2 + 392 = 292, so c2 = −5 and c1 + 37 = 40 says c1 = 3.

8. Let A be the matrix of T . Then A =

1 1 −1
2 2 −2
2 3 −5

. We find the image and kernel by row

reduction:

1 1 −1
2 2 −2
2 3 −5

→
1 1 −1

0 1 −3
0 0 0

. Since the first two columns have pivots, this says

the image of A is spanned by the first two columns, i.e. Im(A) = Span{(1, 2, 2), (1, 2, 3)}. From
this, we can also read off the kernel of A. Any vector in the kernel must satisfy x+ y− z = 0
and y − 3z = 0. This says x = −y + z and y = 3z with z free, so vectors in the kernel are
of the form (x, y, z) = (−2z, 3z, z) = z(−2, 3, 1). This says ker(A) = Span{(−2, 3, 1)}. From
this, we see dim(Im(A)) = 2 and dim(ker(A)) = 1. Geometrically, Im(A) is a plane, and
ker(A) is a line.

9. We need to compute T (1, 0) and T (0, 1), i.e. A~e1 and A~e2, which are the columns of A. Let

B =

(
3 1
1 2

)
. Then B~e1 = (3, 1) and B~e2 = (1, 2) says (AB)~e1 = A

(
3
1

)
= T (3, 1) = (2, 3)

and (AB)~e2 = A

(
1
2

)
= T (1, 2) = (9, 1). This says AB =

(
2 9
3 1

)
. Notice that B is invertible,

with B−1 =

(
2/5 −1/5
−1/5 3/5

)
, so that A =

(
2 9
3 1

)(
2/5 −1/5
−1/5 3/5

)
=

(
−1 5
1 0

)
.

10. (a) We can choose A =


1 2 0 0
−1 3 0 0
3 4 0 0
1 −5 0 0

, for example.

(b) By how matrix multiplication works, vectors in ker(A) are necessarily orthogonal to the
rows of A.

(c) We have At =


1 −1 3 1
2 3 4 −5
0 0 0 0
0 0 0 0

. Since Im(At) is spanned by the columns of At, which

are the rows of A, any vector in ker(A) is therefore necessarily orthogonal to vectors in
Im(At).

(d) Row reduce At:


1 −1 3 1
2 3 4 −5
0 0 0 0
0 0 0 0

 →


1 −1 3 1
0 5 −2 −7
0 0 0 0
0 0 0 0

 →


5 0 13 −2
0 5 −2 −7
0 0 0 0
0 0 0 0

.

This says a vector (x, y, z, t) in ker(At) is of the form (x, y, z, t) = (−13z/5+2t/5, 2z/5+
7t/5, z, t) = z(−13/5, 2/5, 1, 0) + t(2/5, 7/5, 0, 1). From this, we can see that ker(At) =
Span{(−13, 2, 5, 0), (2, 7, 0, 5)}. We then see that vectors in ker(At) are orthogonal to
vectors in V (in fact, they are all such vectors).

Extra:

(a) Let ~x ∈ ker(A). Then A~x = ~0, so A2~x = A(A~x) = A(~0) = ~0. This says ~x ∈ ker(A2), so
ker(A) ⊆ ker(A2). If ~y ∈ Im(A2), then ~y = A2~x for some ~x. But then ~y = A2~x = A(A~x),
which says ~y ∈ Im(A). Therefore, Im(A2) ⊆ Im(A).
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(b) If A = 0 this is obvious, so assume A 6= 0. Then rank(A) = 1 or rank(A) = 2. If rank(A) =
2, then A is invertible, but if A3 = 0 and A is invertible, multiplying by A−2 would say
A = 0, which is not invertible. So actually, this cannot happen. Therefore, rank(A) = 1, so
dim(ker(A)) = 1. By part (a), ker(A) ⊂ ker(A2) and Im(A2) ⊂ Im(A).

Suppose that A2 6= 0, then Im(A2) is a non-zero 1-dimensional subspace of Im(A), i.e.
Im(A2) = Im(A). We then have dim(ker(A2)) = 1, and since dim(ker(A)) = 1 this says

ker(A2) = ker(A). Finally, notice that if ~y ∈ Im(A), then ~y = A~x = A2~x′ for some vectors

~x, ~x′. Then A~y = A3~x′ = ~0, so that ~y ∈ ker(A). This then says that Im(A) = ker(A).
Then for any ~x, we have A2~x = A(A~x) = A(~0) = ~0, which says that A2 = 0. This gives a
contradiction, so that A2 = 0 as desired.
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