Quiz 5 Solutions Tim Smits

1. Let V be the subspace spanned by the vectors $\vec{v}_1 = (1, 1, 1, 1)$, $\vec{v}_2 = (1, 1, -1, -1)$, $\vec{v}_3 = (1, -1, -1, 1)$ in \mathbb{R}^4 . Compute $\operatorname{Proj}_V(\vec{e}_1)$.

Solution: Normalize $\vec{v}_1, \vec{v}_2, \vec{v}_3$ to get unit vectors $\vec{u}_1 = (1/2, 1/2, 1/2, 1/2),$ $\vec{u}_2 = (1/2, 1/2, -1/2, -1/2)$ and $\vec{u}_3 = (1/2, 1/2, -1/2, -1/2).$ Then $\operatorname{Proj}_V(\vec{e}_1) = (\vec{e}_1 \cdot \vec{u}_1)\vec{u}_1 + (\vec{e}_1 \cdot \vec{u}_2)\vec{u}_2 + (\vec{e}_1 \cdot \vec{u}_3)\vec{u}_3 = \frac{1}{2}\vec{u}_1 + \frac{1}{2}\vec{u}_2 + \frac{1}{2}\vec{u}_3 = (3/4, 1/4, -1/4, 1/4).$

2. Find \vec{u}_4 such that $\{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\}$ is an orthonormal basis of \mathbb{R}^4 , where $\vec{u}_1, \vec{u}_2, \vec{u}_3$ are the normalizations of $\vec{v}_1, \vec{v}_2, \vec{v}_3$.

Solution: Any unit vector orthogonal to \vec{u}_1, \vec{u}_2 , and \vec{u}_3 will work. We have $\vec{e}_1^{\perp} = \vec{e}_1 - \text{Proj}_V(\vec{e}_1) \in V^{\perp}$, so we can take $\vec{u}_4 = \vec{e}_1^{\perp} / \|\vec{e}_1^{\perp}\|$. We see that $\vec{e}_1^{\perp} = (1, 0, 0, 0) - (3/4, 1/4, -1/4, 1/4) = (1/4, -1/4, 1/4, -1/4)$, so normalizing gives $\vec{u}_4 = (1/2, -1/2, 1/2, -1/2)$.