Quiz 4 Solutions Tim Smits

1. Let $\beta = \{(3,1), (5,2)\}$ be a basis of \mathbb{R}^2 .

- (a) Find P such that $[\vec{x}]_{\beta} = P\vec{x}$ for any $\vec{x} \in \mathbb{R}^2$.
- (b) Find S such that $\vec{x} = S[\vec{x}]_{\beta}$ for any $x \in \mathbb{R}^2$.

Solution:

- (a) The matrix P we are looking for is the change of basis matrix $S_{\mathcal{E}}^{\beta}$ where $\mathcal{E} = \{\vec{e_1}, \vec{e_2}\}$ is the standard basis of \mathbb{R}^2 . We have $P = S_{\mathcal{E}}^{\beta} = (S_{\beta}^{\mathcal{E}})^{-1} = \begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} 2 & -5 \\ -1 & 3 \end{pmatrix}$.
- (b) The matrix S we are looking for is the change of basis matrix $S_{\beta}^{\mathcal{E}}$. We have $S = S_{\beta}^{\mathcal{E}} = \begin{pmatrix} 1 & 1 \\ \vec{v}_1 & \vec{v}_2 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix}$.
- **2.** Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation with T(3,1) = (6,2) and T(5,2) = (15,6).
 - (a) Find A, the matrix of T.
 - (b) (Bonus): What is the rank of A?

Solution:

- (a) Let $S = \begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix}$. The given conditions say $(AS)\vec{e_1} = A\begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$ and $(AS)\vec{e_2} = A\begin{pmatrix} 5 \\ 2 \end{pmatrix} = \begin{pmatrix} 15 \\ 6 \end{pmatrix}$. This says $AS = \begin{pmatrix} 6 & 15 \\ 2 & 6 \end{pmatrix}$, so that $A = \begin{pmatrix} 6 & 15 \\ 2 & 6 \end{pmatrix} S^{-1} = \begin{pmatrix} -3 & 15 \\ -2 & 8 \end{pmatrix}$. Alternatively, let $\beta = \{(3,1), (5,2)\}$ and \mathcal{E} be the standard basis. Then the matrix of T with respect to β -coordinates, A_β , is given by $A_\beta = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$. The change of basis formula says $A = S^{\mathcal{E}}_{\beta}A_{\beta}S^{\beta}_{\mathcal{E}} = \begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 2 & -5 \\ -1 & 3 \end{pmatrix} = \begin{pmatrix} -3 & 15 \\ -2 & 8 \end{pmatrix}$.
- (b) Many ways to see this; in particular, A is a product of invertible matrices, and therefore invertible, so rank(A) = 2.