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7.2.9 Find the eigenvaluesof A= |1 0 7| along with their algebraic multiplicities.
0 0 2

3—-A =2 5
Solution: We have A — A\I = 1 -2 7 . Expanding the determinant along the
0 0 2—-2A
last row, we have pa(\) = det(A — XI) = (2= A)(=A(B =) +2) = —(A—2)%(A —1). The
eigenvalues are A = 2,1 with multiplicities 2 and 1 respectively.

7.2.21 Prove that if an n X n matrix A has eigenvalues A1, ..., A,, that Tr(A) =X\ + ... + A\p.

Solution: The eigenvalues of A are roots of the characteristic polynomial of A, so write
pa(A) = (A1 — A)...(A\ — A). Recall that the coefficient of \»~! in pa()\) is given by
(—=1)"~1Tr(A). On the other hand, by directly expanding out the product, we see the coefficient
of A"~ in pa(N)is given by (—1)" "I\ +(=1)" " ha+.. .4+ (=) IN, = (=1)" LA +. ..+ \).
Equating coefficients, this says (—1)""'Tr(4) = (=1)""1(A\; + ... + \,), so that Tr(A4) =
A+ o+ )\n

7.2.30 Suppose that A is an n x n matrix with positive entries such that the sum of each row of A
is equal to 1.

a) Let v be an eigenvector of A with positive entries associated to the eigenvalue A. Show tha
Let v b i t f A with iti tri iated to the ei lue A. Show that
A< 1.

(b) Now suppose that v is an eigenvector with no restrictions on the entries with associated
eigenvalue A. Show that |A] < 1.

(¢) Show that A = —1 is not an eigenvalue of A. Show that any eigenvector of eigenvalue 1 is of
the form (¢, ¢,...,c) for some c # 0.
Solution:

(a) Write A = [a;;] and suppose that Av = Av. Let v; be the maximal entry of v. Then the
i-th entry of Av is given by a;1v1+. ..+ ajnvn, s0 we have \v; = a;1v1+. ..+ ainv,. Since
v; is maximal, we have vy < wv; for 1 < k < n, so aj1v1+...+ainvn < a1V +...+aipv; =
(a1 + ...+ ain)v; = v;. This says Av; < v;, and since v; > 0, we find that A < 1.

(b) Let v; be the entry of v such that |v;| is maximal. Then |v;| # 0, because v is an
eigenvector, so in particular, is non-zero. The i-th entry of Av is given by a;yv1 + ...+
@inUn, SO We have a;1v1 + . ..+ a;v, = Av. Taking absolute values, |a;1v1 4. . . + ajnv,| =
[Allv;|. By the triangle inequality, |a;1v1 + ... + @invn| < laallvi| + ... + |aw||on] =
ain|vi| + .. F ainlvn] < anlvi| + ..o F apmlvil = (@i + ...+ a)|vi| = |vi|- This gives
[Al|vi] < |vs], and since |v;| # 0, this says |A] < 1.




(c) First, notice that the rows of a matrix A sum to 1 if and only if e = (1,1,...,1) is an
eigenvector of A with eigenvalue 1. Then notice that if A has rows that sum to 1, then so
does A% because A%e = A(Ae) = Ae = e. Now suppose that —1 is an eigenvalue of A4, so
Av = —v for some non-zero vector v. This says A?v = —Av = v, so that v is an eigenvec-
tor of A2 of eigenvalue 1. Since A? is a positive matrix whose rows sum to 1, assuming
the second part of the statement of the problem, we conclude that v = (¢,c,...,c) for
some ¢ # 0. However, this would then say that (c,c,...,c) = Av = —(c,¢,...,c) = —v,
so that ¢ = 0, which is a contradiction. Therefore, —1 is not an eigenvalue for A.

It remains to show that if A is a positive matrix whose rows sum to 1, that every eigen-
vector of eigenvalue 1 is a multiple of e. Suppose that Av = v for some v. Let v; be the
maximal entry of v. Then looking at the i-th entry, we find v; = a;1v1 + ... + ajpvy <
a1V + .. apv; = (a1 + ... + ang)v; = v;. In particular, this says a;1v1 + ... + apv, =
a1Vt .. appv; = (a;1 +. ..+ an;)v;. Subtracting then gives ZZ:1 aix(v; —vg) = 0. Since
v; 18 maximal, v; — v, > 0 for all k, and a;; are assumed to be positive. This then forces
vi = vg for 1 < k < n, which says all entries of v are the same. This then says that

v=/(c¢c,...,c) for some ¢ # 0 as desired.
7.2.33
010
(a) Find the characteristic polynomial of A= |0 0 1| for arbitrary a,b,c.
a b c

(b) Find a matrix with characteristic polynomial —A3 + 17A% — 5\ + 7.

Solution:
-2 1 0
(a) Wehave A—AXI = 0 —XA 1 |, soexpanding along the first row gives det(A —
a b c—2A

M) =-A=Ac—=A) —b) +a=—\+cA2 + b\ +a.

(b) Take the above matrix with a =, b = —5 and ¢ = 17.

7.2.41 If A is similar to B, prove that Tr(A) = Tr(B).

Solution: Suppose that A is similar to B, so that A = SBS~! for some invertible S. Then
det(A — M) = det(SBS™! — \) = det(S(B — AI)S™!) = det(S)det(B — M)det(S~!) =
det(B — M), so that A and B have the same characteristic polynomial. Since trace is the
coefficient of the A" ~! term (up to sign), this says Tr(A) = Tr(B).

7.2.43 Are there n x n matrices A, B with AB — BA = 1,7

Solution: No; if AB — BA = I,, taking traces says Tr(AB — BA) = Tr(l,). We have
Tr(AB — BA) = Tr(AB) — Tr(BA) = 0, while Tr(,,) = n, so these cannot ever be equal.

-1 0 1
7.3.15 Determine if A= | —3 0 1] is diagonalizable, and if so, diagonalize A.
-4 0 3
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-1-X 0 1
Solution: First, we find pa(\). We have A — A\I = -3 —-A 1 . Expanding the
—4 0 3-—2A
determinant along the second row, we find p4(A) = —A((3—A)(—=1—X)+4) = —A(A—1)2. This
says the eigenvalues of A are A = 0,1 with algebraic multiplicities 0 and 2 respectively. To see
if A is diagonalizable, we need to check if the geometric multiplictity of 1 is equal to 2. We have

-2 0 1
E; =%ker(A—1I)=%ker [ -3 —1 1|. We see this matrix has two linearly independent rows,
-4 0 2

so it has rank 2. Rank nullity says the kernel is therefore 1 dimensional, so dim(Ey) = 1 # 2
says A is not diagonalizable.

7.3.21 Find a 2 x 2 matrix A with E; = Span{(1,2)} and E; = Span{(2,3)}. How many such
matrices are there?

Solution: Write 4 = (a b
c d
1 4

—1
. 12\ o 1A\ [1 2\
v=(1,2) and w = (2,3), i.e. A <2 3> = (2 6>' Solving gives A = <2 6> <2 3> =

<2 :; . From the above, it’s clear that A is unique.

7.3.

0

0

a
- 1 0

Solution: Let A\ be an eigenvalue of A. Then A — X = | 0 —A\ 1 . I claim that
a b c—A
dim(E)y) = 1. To prove this, we give the following slick argument: we have (4 — \I)! =
-2 0 a
1 = b |. Move the first row to the bottom (rank isn’t changed by row operations!),
0 1 c¢c—A

). Then the conditions say that Av = v and Aw = 2w, where

2

What can you say about the geometric multiplicity of the eigenvalues of the matrix A =
0
1| for arbitrary a,b, c?
c

5
1
0
b

1 =X b
and call the resulting matrix B= | 0 1 ¢—AX]. From the pivots in the first two rows,
-2 0 a
we see that rank(B) > 2. This then says rank((A — AI)?) = rank(A — AI) > 2. Since ) is an
eigenvalue, dim(ker(A — AI)) > 1 (you have an eigenvector!), and rank-nullity combined with
the above rank inequality says dim(ker(A — AI')) < 1, which combine to say that dim(E)) = 1.

7.3.37 Let A be an n x n symmetric matrix.
(a) Show that if v,w € R™ that Av-w = v - Aw.

(b) Prove that if v and w are eigenvectors for distinct eigenvalues, then v is orthogonal to w.

Solution:
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(a) Av-w = w'Av, and v - Aw = (Aw)'v = wt A'v = w! Av because A is symmetric.

(b) Suppose Av = A\jv and Aw = Agw for Ay # Aa. Then Av-w = M\v-w, and v-Aw = \v-w.
By part a), this says A (v-w) = Aa(v - w), so (A1 — A2)(v - w) = 0. Since \; # Ag, this
says v - w = 0.

1 b
7.3.47 For what constants a, b, ¢ is the matrix A= | 0 c | diagonalizable?
0 1

o = Q

Solution: We have p4(A\) = (1 — \)3, so A is diagonalizable if and only if dim(E;) = 3, i.e.
ker(A — I) = R3. This happens if and only if A — I =0, so we require a =b = c = 0.

7.3.53 Consider a 5 x 5 matrix A and v € R®. Suppose that v, Av, A%v are linearly independent,
while A3v = av+bAv+ cA%v for some a, b, c. Expand v, Av, A%v to a basis 8 = {v, Av, A%v, w4, ws}
of RO,

(a) Consider B = [T for T'(x) = Az. Write down the first three columns of B.
(b) Explain why pa(A) = pg(A) = h(A\)(=A3 + cA? + bA + a) for some quadratic polynomial h.

(c) Explain why pa(A)v = 0.

Solution:

(a) The first three columns of B are given by (0,1,0,0,0), (0,0,1,0,0) and (a,b,c,0,0).

0 0 al|x =
1 0 b|x*x clD
(b) Write B =] 0 1 c|x* =x = (T‘T) as a block partition. Then pp(\) =
0 0 0fx =
0 0 0]=x =

det(B — A\I5) = det(C — A\I3) det(E — Als) = pc(N)pge(A). From 7.2.33, we know po(A) =
—A3 4+ ¢cA? + bA + a, and pg(N) is some quadratic polynomial h()), since E is a 2 x 2
matrix. Since A and B are similar, they have the same characteristic polynomial, so we
find pa(X) = pp(A) = (=A% + cA? + bA + a)h()\) as desired.

(c) We have pa(A) = (=A% + cA% + bA + al5)h(A) = h(A)(—A3 + cA? + bA + alj), since
both terms in the product only involve powers of A, so they commute. Then ps(A)v =
h(A)(—A3 + cA? + bA + als)v = h(A)(—A3v + cA%v + bAv + av) = 0, because A3v =
av + bAv + cA?v.
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