Selected Solutions to Homwork 9 Tim Smits

7.2.9 Find the eigenvalues of $A = \begin{pmatrix} 3 & -2 & 5 \\ 1 & 0 & 7 \\ 0 & 0 & 2 \end{pmatrix}$ along with their algebraic multiplicities.

Solution: We have $A - \lambda I = \begin{pmatrix} 3 - \lambda & -2 & 5 \\ 1 & -\lambda & 7 \\ 0 & 0 & 2 - \lambda \end{pmatrix}$. Expanding the determinant along the last row, we have $p_A(\lambda) = \det(A - \lambda I) = (2 - \lambda)(-\lambda(3 - \lambda) + 2) = -(\lambda - 2)^2(\lambda - 1)$. The eigenvalues are $\lambda = 2, 1$ with multiplicities 2 and 1 respectively.

7.2.21 Prove that if an $n \times n$ matrix A has eigenvalues $\lambda_1, \ldots, \lambda_n$, that $\operatorname{Tr}(A) = \lambda_1 + \ldots + \lambda_n$.

Solution: The eigenvalues of A are roots of the characteristic polynomial of A, so write $p_A(\lambda) = (\lambda_1 - \lambda) \dots (\lambda_n - \lambda)$. Recall that the coefficient of λ^{n-1} in $p_A(\lambda)$ is given by $(-1)^{n-1}\text{Tr}(A)$. On the other hand, by directly expanding out the product, we see the coefficient of λ^{n-1} in $p_A(\lambda)$ is given by $(-1)^{n-1}\lambda_1 + (-1)^{n-1}\lambda_2 + \dots + (-1)^{n-1}\lambda_n = (-1)^{n-1}(\lambda_1 + \dots + \lambda_n)$. Equating coefficients, this says $(-1)^{n-1}\text{Tr}(A) = (-1)^{n-1}(\lambda_1 + \dots + \lambda_n)$, so that $\text{Tr}(A) = \lambda_1 + \dots + \lambda_n$.

7.2.30 Suppose that A is an $n \times n$ matrix with positive entries such that the sum of each row of A is equal to 1.

- (a) Let v be an eigenvector of A with positive entries associated to the eigenvalue λ . Show that $\lambda \leq 1$.
- (b) Now suppose that v is an eigenvector with no restrictions on the entries with associated eigenvalue λ . Show that $|\lambda| \leq 1$.
- (c) Show that $\lambda = -1$ is not an eigenvalue of A. Show that any eigenvector of eigenvalue 1 is of the form (c, c, \ldots, c) for some $c \neq 0$.

Solution:

- (a) Write $A = [a_{ij}]$ and suppose that $Av = \lambda v$. Let v_i be the maximal entry of v. Then the *i*-th entry of Av is given by $a_{i1}v_1 + \ldots + a_{in}v_n$, so we have $\lambda v_i = a_{i1}v_1 + \ldots + a_{in}v_n$. Since v_i is maximal, we have $v_k \leq v_i$ for $1 \leq k \leq n$, so $a_{i1}v_1 + \ldots + a_{in}v_n \leq a_{i1}v_1 + \ldots + a_{in}v_i = (a_{i1} + \ldots + a_{in})v_i = v_i$. This says $\lambda v_i \leq v_i$, and since $v_i > 0$, we find that $\lambda \leq 1$.
- (b) Let v_i be the entry of v such that $|v_i|$ is maximal. Then $|v_i| \neq 0$, because v is an eigenvector, so in particular, is non-zero. The *i*-th entry of Av is given by $a_{i1}v_1 + \ldots + a_{in}v_n$, so we have $a_{i1}v_1 + \ldots + a_{in}v_n = \lambda v$. Taking absolute values, $|a_{i1}v_1 + \ldots + a_{in}v_n| = |\lambda||v_i|$. By the triangle inequality, $|a_{i1}v_1 + \ldots + a_{in}v_n| \leq |a_{i1}||v_1| + \ldots + |a_{in}||v_n| = a_{i1}|v_1| + \ldots + a_{in}|v_n| \leq a_{i1}|v_i| + \ldots + a_{in}|v_i| = (a_{i1} + \ldots + a_{in})|v_i| = |v_i|$. This gives $|\lambda||v_i| \leq |v_i|$, and since $|v_i| \neq 0$, this says $|\lambda| \leq 1$.

(c) First, notice that the rows of a matrix A sum to 1 if and only if e = (1, 1, ..., 1) is an eigenvector of A with eigenvalue 1. Then notice that if A has rows that sum to 1, then so does A^2 , because $A^2e = A(Ae) = Ae = e$. Now suppose that -1 is an eigenvalue of A, so Av = -v for some non-zero vector v. This says $A^2v = -Av = v$, so that v is an eigenvector of A^2 of eigenvalue 1. Since A^2 is a positive matrix whose rows sum to 1, assuming the second part of the statement of the problem, we conclude that v = (c, c, ..., c) for some $c \neq 0$. However, this would then say that (c, c, ..., c) = Av = -(c, c, ..., c) = -v, so that c = 0, which is a contradiction. Therefore, -1 is not an eigenvalue for A.

It remains to show that if A is a positive matrix whose rows sum to 1, that every eigenvector of eigenvalue 1 is a multiple of e. Suppose that Av = v for some v. Let v_i be the maximal entry of v. Then looking at the *i*-th entry, we find $v_i = a_{i1}v_1 + \ldots + a_{in}v_n \leq a_{i1}v_i + \ldots + a_{in}v_i = (a_{i1} + \ldots + a_{ni})v_i = v_i$. In particular, this says $a_{i1}v_1 + \ldots + a_{in}v_n = a_{i1}v_i + \ldots + a_{in}v_i = (a_{i1} + \ldots + a_{ni})v_i$. Subtracting then gives $\sum_{k=1}^n a_{ik}(v_i - v_k) = 0$. Since v_i is maximal, $v_i - v_k > 0$ for all k, and a_{ik} are assumed to be positive. This then forces $v_i = v_k$ for $1 \leq k \leq n$, which says all entries of v are the same. This then says that $v = (c, c, \ldots, c)$ for some $c \neq 0$ as desired.

7.2.33

- (a) Find the characteristic polynomial of $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ a & b & c \end{pmatrix}$ for arbitrary a, b, c.
- (b) Find a matrix with characteristic polynomial $-\lambda^3 + 17\lambda^2 5\lambda + \pi$.

Solution:

(a) We have $A - \lambda I = \begin{pmatrix} -\lambda & 1 & 0\\ 0 & -\lambda & 1\\ a & b & c - \lambda \end{pmatrix}$, so expanding along the first row gives $\det(A - \lambda I) = -\lambda(-\lambda(c-\lambda)-b) + a = -\lambda^3 + c\lambda^2 + b\lambda + a$.

(b) Take the above matrix with $a = \pi$, b = -5 and c = 17.

7.2.41 If A is similar to B, prove that Tr(A) = Tr(B).

Solution: Suppose that A is similar to B, so that $A = SBS^{-1}$ for some invertible S. Then $\det(A - \lambda I) = \det(SBS^{-1} - \lambda I) = \det(S(B - \lambda I)S^{-1}) = \det(S)\det(B - \lambda I)\det(S^{-1}) = \det(B - \lambda I)$, so that A and B have the same characteristic polynomial. Since trace is the coefficient of the λ^{n-1} term (up to sign), this says $\operatorname{Tr}(A) = \operatorname{Tr}(B)$.

7.2.43 Are there $n \times n$ matrices A, B with $AB - BA = I_n$?

Solution: No; if $AB - BA = I_n$, taking traces says $Tr(AB - BA) = Tr(I_n)$. We have Tr(AB - BA) = Tr(AB) - Tr(BA) = 0, while $Tr(I_n) = n$, so these cannot ever be equal.

7.3.15 Determine if $A = \begin{pmatrix} -1 & 0 & 1 \\ -3 & 0 & 1 \\ -4 & 0 & 3 \end{pmatrix}$ is diagonalizable, and if so, diagonalize A.

Solution: First, we find $p_A(\lambda)$. We have $A - \lambda I = \begin{pmatrix} -1 - \lambda & 0 & 1 \\ -3 & -\lambda & 1 \\ -4 & 0 & 3 - \lambda \end{pmatrix}$. Expanding the determinant along the second row, we find $p_A(\lambda) = -\lambda((3-\lambda)(-1-\lambda)+4) = -\lambda(\lambda-1)^2$. This says the eigenvalues of A are $\lambda = 0, 1$ with algebraic multiplicities 0 and 2 respectively. To see if A is diagonalizable, we need to check if the geometric multiplicity of 1 is equal to 2. We have $E_1 = \ker(A - I) = \ker\begin{pmatrix} -2 & 0 & 1 \\ -3 & -1 & 1 \\ -4 & 0 & 2 \end{pmatrix}$. We see this matrix has two linearly independent rows, so it has rank 2. Rank nullity says the kernel is therefore 1 dimensional, so $\dim(E_1) = 1 \neq 2$ says A is not diagonalizable.

7.3.21 Find a 2×2 matrix A with $E_1 = \text{Span}\{(1,2)\}$ and $E_2 = \text{Span}\{(2,3)\}$. How many such matrices are there?

Solution: Write $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Then the conditions say that Av = v and Aw = 2w, where v = (1,2) and w = (2,3), i.e. $A \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 4 \\ 2 & 6 \end{pmatrix}$. Solving gives $A = \begin{pmatrix} 1 & 4 \\ 2 & 6 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}^{-1} = \begin{pmatrix} 5 & -2 \\ 6 & -2 \end{pmatrix}$. From the above, it's clear that A is unique.

7.3.25 What can you say about the geometric multiplicity of the eigenvalues of the matrix $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ a & b & c \end{pmatrix}$ for arbitrary a, b, c?

Solution: Let λ be an eigenvalue of A. Then $A - \lambda I = \begin{pmatrix} -\lambda & 1 & 0 \\ 0 & -\lambda & 1 \\ a & b & c - \lambda \end{pmatrix}$. I claim that $\dim(E_{\lambda}) = 1$. To prove this, we give the following slick argument: we have $(A - \lambda I)^t = \begin{pmatrix} -\lambda & 0 & a \\ 1 & -\lambda & b \\ 0 & 1 & c - \lambda \end{pmatrix}$. Move the first row to the bottom (rank isn't changed by row operations!), and call the resulting matrix $B = \begin{pmatrix} 1 & -\lambda & b \\ 0 & 1 & c - \lambda \\ -\lambda & 0 & a \end{pmatrix}$. From the pivots in the first two rows, we see that $\operatorname{rank}(B) \geq 2$. This then says $\operatorname{rank}((A - \lambda I)^t) = \operatorname{rank}(A - \lambda I) \geq 2$. Since λ is an eigenvalue, $\dim(\ker(A - \lambda I)) \geq 1$ (you have an eigenvector!), and $\operatorname{rank-nullity}$ combined with the above rank inequality says $\dim(\ker(A - \lambda I)) \leq 1$, which combine to say that $\dim(E_{\lambda}) = 1$.

7.3.37 Let A be an $n \times n$ symmetric matrix.

- (a) Show that if $v, w \in \mathbb{R}^n$ that $Av \cdot w = v \cdot Aw$.
- (b) Prove that if v and w are eigenvectors for distinct eigenvalues, then v is orthogonal to w.

Solution:

- (a) $Av \cdot w = w^t Av$, and $v \cdot Aw = (Aw)^t v = w^t A^t v = w^t Av$ because A is symmetric.
- (b) Suppose $Av = \lambda_1 v$ and $Aw = \lambda_2 w$ for $\lambda_1 \neq \lambda_2$. Then $Av \cdot w = \lambda_1 v \cdot w$, and $v \cdot Aw = \lambda_2 v \cdot w$. By part *a*), this says $\lambda_1(v \cdot w) = \lambda_2(v \cdot w)$, so $(\lambda_1 - \lambda_2)(v \cdot w) = 0$. Since $\lambda_1 \neq \lambda_2$, this says $v \cdot w = 0$.

7.3.47 For what constants a, b, c is the matrix $A = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$ diagonalizable?

Solution: We have $p_A(\lambda) = (1 - \lambda)^3$, so A is diagonalizable if and only if dim $(E_1) = 3$, i.e. $\ker(A - I) = \mathbb{R}^3$. This happens if and only if A - I = 0, so we require a = b = c = 0.

7.3.53 Consider a 5 × 5 matrix A and $v \in \mathbb{R}^5$. Suppose that v, Av, A^2v are linearly independent, while $A^3v = av + bAv + cA^2v$ for some a, b, c. Expand v, Av, A^2v to a basis $\beta = \{v, Av, A^2v, w_4, w_5\}$ of \mathbb{R}^5 .

- (a) Consider $B = [T]_{\beta}$ for T(x) = Ax. Write down the first three columns of B.
- (b) Explain why $p_A(\lambda) = p_B(\lambda) = h(\lambda)(-\lambda^3 + c\lambda^2 + b\lambda + a)$ for some quadratic polynomial h.
- (c) Explain why $p_A(A)v = 0$.

Solution:

(a) The first three columns of B are given by (0, 1, 0, 0, 0), (0, 0, 1, 0, 0) and (a, b, c, 0, 0).

(b) Write
$$B = \begin{pmatrix} 0 & 0 & a & | * & * \\ 1 & 0 & b & | * & * \\ 0 & 1 & c & | * & * \\ \hline 0 & 0 & 0 & | * & * \\ 0 & 0 & 0 & | * & * \end{pmatrix} = \begin{pmatrix} C & D \\ \hline 0 & E \end{pmatrix}$$
 as a block partition. Then $p_B(\lambda) =$

det $(B - \lambda I_5) = det(C - \lambda I_3) det(E - \lambda I_2) = p_C(\lambda)p_E(\lambda)$. From 7.2.33, we know $p_C(\lambda) = -\lambda^3 + c\lambda^2 + b\lambda + a$, and $p_E(\lambda)$ is some quadratic polynomial $h(\lambda)$, since E is a 2 × 2 matrix. Since A and B are similar, they have the same characteristic polynomial, so we find $p_A(\lambda) = p_B(\lambda) = (-\lambda^3 + c\lambda^2 + b\lambda + a)h(\lambda)$ as desired.

(c) We have $p_A(A) = (-A^3 + cA^2 + bA + aI_5)h(A) = h(A)(-A^3 + cA^2 + bA + aI_5)$, since both terms in the product only involve powers of A, so they commute. Then $p_A(A)v = h(A)(-A^3 + cA^2 + bA + aI_5)v = h(A)(-A^3v + cA^2v + bAv + av) = 0$, because $A^3v = av + bAv + cA^2v$.