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7.2.9 Find the eigenvalues of A =

3 −2 5
1 0 7
0 0 2

 along with their algebraic multiplicities.

Solution: We have A − λI =

3− λ −2 5
1 −λ 7
0 0 2− λ

. Expanding the determinant along the

last row, we have pA(λ) = det(A − λI) = (2 − λ)(−λ(3 − λ) + 2) = −(λ − 2)2(λ − 1). The
eigenvalues are λ = 2, 1 with multiplicities 2 and 1 respectively.

7.2.21 Prove that if an n× n matrix A has eigenvalues λ1, . . . , λn, that Tr(A) = λ1 + . . .+ λn.

Solution: The eigenvalues of A are roots of the characteristic polynomial of A, so write
pA(λ) = (λ1 − λ) . . . (λn − λ). Recall that the coefficient of λn−1 in pA(λ) is given by
(−1)n−1Tr(A). On the other hand, by directly expanding out the product, we see the coefficient
of λn−1 in pA(λ) is given by (−1)n−1λ1+(−1)n−1λ2+. . .+(−1)n−1λn = (−1)n−1(λ1+. . .+λn).
Equating coefficients, this says (−1)n−1Tr(A) = (−1)n−1(λ1 + . . . + λn), so that Tr(A) =
λ1 + . . .+ λn.

7.2.30 Suppose that A is an n×n matrix with positive entries such that the sum of each row of A
is equal to 1.

(a) Let v be an eigenvector of A with positive entries associated to the eigenvalue λ. Show that
λ ≤ 1.

(b) Now suppose that v is an eigenvector with no restrictions on the entries with associated
eigenvalue λ. Show that |λ| ≤ 1.

(c) Show that λ = −1 is not an eigenvalue of A. Show that any eigenvector of eigenvalue 1 is of
the form (c, c, . . . , c) for some c 6= 0.

Solution:

(a) Write A = [aij ] and suppose that Av = λv. Let vi be the maximal entry of v. Then the
i-th entry of Av is given by ai1v1 + . . .+ainvn, so we have λvi = ai1v1 + . . .+ainvn. Since
vi is maximal, we have vk ≤ vi for 1 ≤ k ≤ n, so ai1v1 + . . .+ainvn ≤ ai1vi+ . . .+ainvi =
(ai1 + . . .+ ain)vi = vi. This says λvi ≤ vi, and since vi > 0, we find that λ ≤ 1.

(b) Let vi be the entry of v such that |vi| is maximal. Then |vi| 6= 0, because v is an
eigenvector, so in particular, is non-zero. The i-th entry of Av is given by ai1v1 + . . . +
ainvn, so we have ai1v1 + . . .+ainvn = λv. Taking absolute values, |ai1v1 + . . .+ainvn| =
|λ||vi|. By the triangle inequality, |ai1v1 + . . . + ainvn| ≤ |ai1||v1| + . . . + |ain||vn| =
ai1|v1| + . . . + ain|vn| ≤ ai1|vi| + . . . + ain|vi| = (ai1 + . . . + ain)|vi| = |vi|. This gives
|λ||vi| ≤ |vi|, and since |vi| 6= 0, this says |λ| ≤ 1.
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(c) First, notice that the rows of a matrix A sum to 1 if and only if e = (1, 1, . . . , 1) is an
eigenvector of A with eigenvalue 1. Then notice that if A has rows that sum to 1, then so
does A2, because A2e = A(Ae) = Ae = e. Now suppose that −1 is an eigenvalue of A, so
Av = −v for some non-zero vector v. This says A2v = −Av = v, so that v is an eigenvec-
tor of A2 of eigenvalue 1. Since A2 is a positive matrix whose rows sum to 1, assuming
the second part of the statement of the problem, we conclude that v = (c, c, . . . , c) for
some c 6= 0. However, this would then say that (c, c, . . . , c) = Av = −(c, c, . . . , c) = −v,
so that c = 0, which is a contradiction. Therefore, −1 is not an eigenvalue for A.

It remains to show that if A is a positive matrix whose rows sum to 1, that every eigen-
vector of eigenvalue 1 is a multiple of e. Suppose that Av = v for some v. Let vi be the
maximal entry of v. Then looking at the i-th entry, we find vi = ai1v1 + . . . + ainvn ≤
ai1vi + . . . ainvi = (ai1 + . . .+ ani)vi = vi. In particular, this says ai1v1 + . . .+ ainvn =
ai1vi+ . . . ainvi = (ai1 + . . .+ani)vi. Subtracting then gives

∑n
k=1 aik(vi−vk) = 0. Since

vi is maximal, vi − vk > 0 for all k, and aik are assumed to be positive. This then forces
vi = vk for 1 ≤ k ≤ n, which says all entries of v are the same. This then says that
v = (c, c, . . . , c) for some c 6= 0 as desired.

7.2.33

(a) Find the characteristic polynomial of A =

0 1 0
0 0 1
a b c

 for arbitrary a, b, c.

(b) Find a matrix with characteristic polynomial −λ3 + 17λ2 − 5λ+ π.

Solution:

(a) We have A − λI =

−λ 1 0
0 −λ 1
a b c− λ

, so expanding along the first row gives det(A −

λI) = −λ(−λ(c− λ)− b) + a = −λ3 + cλ2 + bλ+ a.

(b) Take the above matrix with a = π, b = −5 and c = 17.

7.2.41 If A is similar to B, prove that Tr(A) = Tr(B).

Solution: Suppose that A is similar to B, so that A = SBS−1 for some invertible S. Then
det(A − λI) = det(SBS−1 − λI) = det(S(B − λI)S−1) = det(S) det(B − λI) det(S−1) =
det(B − λI), so that A and B have the same characteristic polynomial. Since trace is the
coefficient of the λn−1 term (up to sign), this says Tr(A) = Tr(B).

7.2.43 Are there n× n matrices A,B with AB −BA = In?

Solution: No; if AB − BA = In, taking traces says Tr(AB − BA) = Tr(In). We have
Tr(AB −BA) = Tr(AB)− Tr(BA) = 0, while Tr(In) = n, so these cannot ever be equal.

7.3.15 Determine if A =

−1 0 1
−3 0 1
−4 0 3

 is diagonalizable, and if so, diagonalize A.
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Solution: First, we find pA(λ). We have A − λI =

−1− λ 0 1
−3 −λ 1
−4 0 3− λ

. Expanding the

determinant along the second row, we find pA(λ) = −λ((3−λ)(−1−λ)+4) = −λ(λ−1)2. This
says the eigenvalues of A are λ = 0, 1 with algebraic multiplicities 0 and 2 respectively. To see
if A is diagonalizable, we need to check if the geometric multiplictity of 1 is equal to 2. We have

E1 = ker(A− I) = ker

−2 0 1
−3 −1 1
−4 0 2

. We see this matrix has two linearly independent rows,

so it has rank 2. Rank nullity says the kernel is therefore 1 dimensional, so dim(E1) = 1 6= 2
says A is not diagonalizable.

7.3.21 Find a 2 × 2 matrix A with E1 = Span{(1, 2)} and E2 = Span{(2, 3)}. How many such
matrices are there?

Solution: Write A =

(
a b
c d

)
. Then the conditions say that Av = v and Aw = 2w, where

v = (1, 2) and w = (2, 3), i.e. A

(
1 2
2 3

)
=

(
1 4
2 6

)
. Solving gives A =

(
1 4
2 6

)(
1 2
2 3

)−1

=(
5 −2
6 −2

)
. From the above, it’s clear that A is unique.

7.3.25 What can you say about the geometric multiplicity of the eigenvalues of the matrix A =0 1 0
0 0 1
a b c

 for arbitrary a, b, c?

Solution: Let λ be an eigenvalue of A. Then A − λI =

−λ 1 0
0 −λ 1
a b c− λ

. I claim that

dim(Eλ) = 1. To prove this, we give the following slick argument: we have (A − λI)t =−λ 0 a
1 −λ b
0 1 c− λ

. Move the first row to the bottom (rank isn’t changed by row operations!),

and call the resulting matrix B =

 1 −λ b
0 1 c− λ
−λ 0 a

. From the pivots in the first two rows,

we see that rank(B) ≥ 2. This then says rank((A − λI)t) = rank(A − λI) ≥ 2. Since λ is an
eigenvalue, dim(ker(A − λI)) ≥ 1 (you have an eigenvector!), and rank-nullity combined with
the above rank inequality says dim(ker(A− λI)) ≤ 1, which combine to say that dim(Eλ) = 1.

7.3.37 Let A be an n× n symmetric matrix.

(a) Show that if v, w ∈ Rn that Av · w = v ·Aw.

(b) Prove that if v and w are eigenvectors for distinct eigenvalues, then v is orthogonal to w.

Solution:
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(a) Av · w = wtAv, and v ·Aw = (Aw)tv = wtAtv = wtAv because A is symmetric.

(b) Suppose Av = λ1v and Aw = λ2w for λ1 6= λ2. Then Av ·w = λ1v ·w, and v ·Aw = λ2v ·w.
By part a), this says λ1(v · w) = λ2(v · w), so (λ1 − λ2)(v · w) = 0. Since λ1 6= λ2, this
says v · w = 0.

7.3.47 For what constants a, b, c is the matrix A =

1 a b
0 1 c
0 0 1

 diagonalizable?

Solution: We have pA(λ) = (1 − λ)3, so A is diagonalizable if and only if dim(E1) = 3, i.e.
ker(A− I) = R3. This happens if and only if A− I = 0, so we require a = b = c = 0.

7.3.53 Consider a 5 × 5 matrix A and v ∈ R5. Suppose that v,Av,A2v are linearly independent,
while A3v = av+bAv+cA2v for some a, b, c. Expand v,Av,A2v to a basis β = {v,Av,A2v, w4, w5}
of R5.

(a) Consider B = [T ]β for T (x) = Ax. Write down the first three columns of B.

(b) Explain why pA(λ) = pB(λ) = h(λ)(−λ3 + cλ2 + bλ+ a) for some quadratic polynomial h.

(c) Explain why pA(A)v = 0.

Solution:

(a) The first three columns of B are given by (0, 1, 0, 0, 0), (0, 0, 1, 0, 0) and (a, b, c, 0, 0).

(b) Write B =


0 0 a ∗ ∗
1 0 b ∗ ∗
0 1 c ∗ ∗
0 0 0 ∗ ∗
0 0 0 ∗ ∗

 =

(
C D
0 E

)
as a block partition. Then pB(λ) =

det(B−λI5) = det(C −λI3) det(E−λI2) = pC(λ)pE(λ). From 7.2.33, we know pC(λ) =
−λ3 + cλ2 + bλ + a, and pE(λ) is some quadratic polynomial h(λ), since E is a 2 × 2
matrix. Since A and B are similar, they have the same characteristic polynomial, so we
find pA(λ) = pB(λ) = (−λ3 + cλ2 + bλ+ a)h(λ) as desired.

(c) We have pA(A) = (−A3 + cA2 + bA + aI5)h(A) = h(A)(−A3 + cA2 + bA + aI5), since
both terms in the product only involve powers of A, so they commute. Then pA(A)v =
h(A)(−A3 + cA2 + bA + aI5)v = h(A)(−A3v + cA2v + bAv + av) = 0, because A3v =
av + bAv + cA2v.
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