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6.3.13 Find the area of the parallelogram spanned by (1, 1, 1, 1) and (1, 2, 3, 4).

Solution: The area is given by
√

det(AtA) where A =


1 1
1 2
1 3
1 4

. We see that AtA =

(
4 10
10 30

)
, so det(AtA) = 20 says the area is

√
20.

6.3.19 A basis v1, v2, v3 of R3 is called positively oriented if v1 encloses an acute angle with v2×v3.
Show that v1, v2, v3 is positively oriented if and only if det

(
v1 v2 v3

)
is positive.

Solution: We have det
(
v1 v2 v3

)
= v1 · (v2 × v3) = ‖v1‖‖v2 × v3‖ cos(θ) where θ is the

angle between v1 and v2 × v3. This determinant is positive if and only if cos(θ) > 0, and since
0 ≤ 0 ≤ π, this happens if and only if 0 < θ < π/2, i.e. θ is an acute angle.

6.3.25 Find the classical adjoint of A =

1 0 1
0 1 0
2 0 1

, and use this to find A−1.

Solution: The adjoint of A is given by

 C11 −C12 C13

−C21 C22 −C23

C31 −C32 C33

t

, where Cij is the (i, j)-

th cofactor of A, i.e. the determinant of the matrix you get when you delete the i-th row
and j-th column of A. If you do this (annoying) computation, you’ll find that Adj(A) = 1 0 −1

0 −1 0
−2 0 1

. We compute that det(A) = −1, and we have A−1 = 1
det(A)Adj(A), so

A−1 =

−1 0 1
0 1 0
2 0 −1

.

6.3.37 What is the relationship between Adj(A) and Adj(A−1)?

Solution: By definition, we have Adj(A) = det(A)A−1 and Adj(A−1) = det(A−1)A. Since
det(A−1) = 1

det(A) , this says Adj(A−1) = 1
det(A)A. Notice that 1

det(A)A is the inverse of Adj(A),

so that Adj(A−1) = (Adj(A))−1.

6.7 True or false: det(A+B) = det(A) + det(B) for any 5× 5 matrices A and B.
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Solution: False; take A = B. Then det(A+B) = det(2A) = 25 det(A), which is obviously not
2 det(A).

6.19 If A is an n× n matrix, then det(AAt) = det(AtA).

Solution: True; det(AAt) = det(A) det(At) = det(At) det(A) = det(AtA).

6.37 If an n × n matrix A is invertible, then there must be an (n − 1) × (n − 1) submatrix of A
(obtained by deleting a row and a column of A) that is invertible as well.

Solution: True; by the cofactor expansion of A, we have det(A) =
∑
i,j(−1)i+jCij , where Cij

is the ij-th cofactor of A. If A is invertible, then det(A) 6= 0, so in particular, not every term
in the sum can be 0. This says Cij 6= 0 for some (i, j). Since Cij is the determinant of the
matrix you get when you delete the i-th row and j-th column of A, this says that A has an
(n− 1)× (n− 1) submatrix with non-zero determinant, i.e. is invertible.

7.1.3 If v is an eigenvector of A with eigenvalue λ, is v an eigenvector of A+ 2I?

Solution: Yes; (A + 2I)v = Av + 2v = λv + 2v = (λ + 2)v. So v is an eigenvector with
eigenvalue λ+ 2.

7.1.13 Show that 4 is an eigenvalue of A =

(
−6 6
−15 13

)
. Find all corresponding eigenvectors.

Solution: We need to show that Av = 4v for some v, i.e. (A − 4I)v = 0 for some v. We

compute that A − 4I =

(
−10 6
−15 9

)
. We see that rank(A − 4I) = 1 because the columns are

multiples of each other, so that by rank-nullity, dim(ker(A − 4I)) = 1 says A − 4I has a non-
trivial kernel, i.e. that 4 is an eigenvalue of A. To find an eigenvector, we just need to find a
single vector in the kernel (since it’s 1-dimensional, any such eigenvector is necessarily just a
scalar multiple). We see that v = (3, 5) works.

7.1.19 Let P be the orthogonal projection onto a line L in R3. Is P diagonalizable? If so, find an
eigenbasis.

Solution: Let v be a vector spanning the line L, and pick a basis {w1, w2} of L⊥. Then
β = {v, w1, w2} is a basis of R3. Geometrically, it’s clear that Pv = v because v lies on L to
begin with, and that Pw1 = Pw2 = 0. This says that v is an eigenvector with eigenvalue 1, and
w1, w2 are eigenvectors with eigenvalue 0. This says that {v, w1, w2} is a basis of eigenvectors
of P , i.e. an eigenbasis. Therefore, P is diagonalizable. With respect to this new basis β, we

indeed see that Pβ =

1 0 0
0 0 0
0 0 0

 is diagonal.

7.1.35 Show that similar matrices have the same eigenvalues.
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Solution: Suppose that A ∼ B, so that there is invertible S such that A = S−1BS. If v is an
eigenvalue of A with eigenvalue λ, then Av = λv. This says S−1BSv = λv, so that BSv = λSv
after multiplying by S. This then says B(Sv) = λ(Sv), so that Sv is an eigenvector of B
with eigenvalue λ. This shows that any eigenvalue of A is an eigenvalue of B. Repeating the
argument with the roles of A and B swapped says any eigenvalue of B is an eigenvalue of A,
so that A and B have the same eigenvalues.

7.1.47 If v is an eigenvector of A, show that v is in the image of A or the kernel of A.

Solution: Suppose that Av = λv. If λ = 0, this says Av = 0, so that v ∈ ker(A). If λ 6= 0,
then A( 1

λv) = v, so that v ∈ im(A).
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