Selected Solutions to Homwork 7 Tim Smits

6.1.21 For what values of k is $A = \begin{pmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k \end{pmatrix}$ invertible?

Solution: We have A is invertible if and only if $\det(A) \neq 0$. Expanding the determinant out along the first row, $\det(A) = k \det \begin{pmatrix} k & 1 \\ 1 & k \end{pmatrix} - \det \begin{pmatrix} 1 & 1 \\ 1 & k \end{pmatrix} + \det \begin{pmatrix} 1 & k \\ 1 & 1 \end{pmatrix} = k(k^2 - 1) - (k - 1) + (1 - k) = k^3 - 3k + 2 = (k - 1)^2(k + 2)$. We then see that $\det(A) \neq 0$ for $k \neq 1, -2$.

6.1.29 Find the values of λ that make $A - \lambda I$ not invertible, where $A = \begin{pmatrix} 3 & 5 & 6 \\ 0 & 4 & 2 \\ 0 & 2 & 7 \end{pmatrix}$.

Solution: We have $A - \lambda I = \begin{pmatrix} 3-\lambda & 5 & 6\\ 0 & 4-\lambda & 2\\ 0 & 2 & 7-\lambda \end{pmatrix}$. Then $A - \lambda I$ is not invertible if and only if $\det(A - \lambda I) = 0$. Expanding the determinant out along the first column, $\det(A - \lambda I) = (3-\lambda) \det \begin{pmatrix} 4-\lambda & 2\\ 2 & 7-\lambda \end{pmatrix} = (3-\lambda)[(4-\lambda)(7-\lambda)-4)] = -(\lambda-3)^2(\lambda-8)$. Therefore, $\lambda = 3, 8$ are the values we seek.

6.1.43 If A is an $n \times n$ matrix, what is the relationship between det(A) and det(-A)?

Solution: Write
$$A = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$
 where v_i are the rows of A . Then $-A = \begin{pmatrix} -v_1 \\ -v_2 \\ \vdots \\ -v_n \end{pmatrix}$. The determinant is linear as a function of each fixed row. As a function of the first row, $\det(-A) = -\det\begin{pmatrix} v_1 \\ -v_2 \\ \vdots \\ -v_n \end{pmatrix}$. As a function of the second row, $\det\begin{pmatrix} v_1 \\ -v_2 \\ \vdots \\ -v_n \end{pmatrix} = -\det\begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ -v_n \end{pmatrix}$, so $\det(-A) = (-1)^2 \det\begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ -v_n \end{pmatrix}$. Continuing this logic, we eventually find $\det(-A) = (-1)^n \det(A)$.

6.1.57 What are the possible determinants for a permutation matrix?

Solution: Let A be an $n \times n$ permutation matrix, so that A has exactly one 1 in each row and column. Say the columns of A are v_1, \ldots, v_n , so by definition, $v_i = e_j$ for some j, where

 e_j is a standard basis vector of \mathbb{R}^n . If T is the linear transformation associated to A, since $T(e_i) = v_i$, this says that T just permutes the set of basis vectors $\{e_1, \ldots, e_n\}$ of \mathbb{R}^n into the set $\{v_1, \ldots, v_n\}$. We can define an inverse of T by defining $T^{-1}(v_i) = e_i$ (note that $\{v_1, \ldots, v_n\}$ is a basis, so this is all we need to define a linear transformation!), and then it's clear that $T(T^{-1}(v_i)) = v_i$ and $T^{-1}(T(e_i)) = e_i$. Furthermore, by construction, T^{-1} itself is just another permutation, so that A^{-1} is a permutation matrix. This says that A and A^{-1} are both matrices with *integer* entries, so by 6.2.37 this says det $(A) = \pm 1$.

6.2.15 Let A be a 4×4 matrix with rows v_i . Suppose that det(A) = 8. What is det $\begin{pmatrix} v_1 \\ v_1 + v_2 \\ v_1 + v_2 + v_3 \\ v_1 + v_2 + v_3 + v_4 \end{pmatrix}$?

Solution: Perform row reduction: subtract row 3 from row 4, row 2 from row 3, and row 1 from row 2. We find det $\begin{pmatrix} v_1 \\ v_1 + v_2 \\ v_1 + v_2 + v_3 \\ v_1 + v_2 + v_3 + v_4 \end{pmatrix} = \det(A) = 8.$

6.2.31 A Vandermonde matrix is an $n \times n$ matrix of the form $A = \begin{pmatrix} 1 & 1 & \dots & 1 \\ a_0 & a_1 & \dots & a_n \\ a_0^2 & a_1^2 & \dots & a_n^2 \\ \vdots & \vdots & \vdots & \vdots \\ a_0^n & a_1^n & \dots & a_n^n \end{pmatrix}$. Vander-

monde showed that $\det(A) = \prod_{i>j} (a_i - a_j).$

(a) Verify this for n = 1.

(b) Suppose that the formula holds for any $n - 1 \times n - 1$ Vandermonde matrix. Define f(t) = $det \begin{pmatrix} 1 & 1 & \dots & 1 & 1 \\ a_0 & a_1 & \dots & a_{n-1} & t \\ a_0^2 & a_1^2 & \dots & a_{n-1}^2 & t^2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_0^n & a_1^n & \dots & a_{n-1}^n & t^n \end{pmatrix}.$ Show that f(t) is a degree n polynomial with roots a_0, a_1, \dots, a_{n-1} .

Let k be the coefficient of t^n in f(t). Conclude that $f(t) = k(t - a_0) \dots (t - a_{n-1})$ for some k. Plugging in a_{n-1} , deduce Vandermonde's formula.

Solution:

- (a) We have det $\begin{pmatrix} 1 & 1 \\ a_0 & a_1 \end{pmatrix} = a_1 a_0$, so the formula holds.
- (b) Expand the determinant of the matrix out along the last column, it's then easy to see that it must be a degree *n* polynomial in the variable *t*. Using the formula for the cofactor expansion, the coefficient *k* of *tⁿ* is given by $(-1)^{2n} \det(A_{nn}) = \det \begin{pmatrix} 1 & 1 & \dots & 1 \\ a_0 & a_1 & \dots & a_{n-1} \\ a_0^2 & a_1^2 & \dots & a_{n-1}^2 \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix} =$

$$\begin{array}{c} \left\langle a_0^{n-1} & a_1^{n-1} & \dots & a_{n-1}^{n-1} \right\rangle \\ \prod_{n-1>i>j} (a_i - a_j) \text{ by assumption, since this is an } n-1 \times n-1 \text{ Vandermonde matrix.} \end{array}$$

Now, $f(a_0) = f(a_1) = \ldots = f(a_{n-1}) = 0$, because the matrix will have a repeated column and therefore will not be invertible, and thus have 0 determinant. Since f(t) is a degree n polynomial and we have found n roots of f(t), this says $f(t) = k(t - a_0) \ldots (t - a_{n-1})$. If we plug in $t = a_n$, we find det $(A) = k(a_n - a_0) \ldots (a_n - a_{n-1}) = \left(\prod_{n-1 \ge i > j} (a_i - a_j)\right)(a_n - a_0) \ldots (a_n - a_{n-1}) = \prod_{n \ge i > j} (a_i - a_j)$. By induction, this proves Vandermonde's formula!

6.2.37 Consider an $n \times n$ matrix A such that both A and A^{-1} have integer entries. What are the possible values for det(A)?

Solution: The key fact is that the determinant of a matrix A is a *polynomial* in the entries of the matrix A as a result of the cofactor expansion formula. In particular, since A and A^{-1} both have integer entries, det(A) and det (A^{-1}) are just sums of products of integers, and therefore both integers. Since det(A) det $(A^{-1}) =$ det(I) = 1, this forces det(A) =det $(A^{-1}) = \pm 1$, since these are the only integer solutions to xy = 1.

6.2.41 Suppose A is an $n \times n$ skew-symmetric matrix, where n is odd. Show that A is not invertible.

Solution: Since A is skew-symmetric, we have $A = -A^t$. Then $det(A) = det(-A^t) = (-1)^n det(A^t) = (-1)^n det(A) = -det(A)$ since n is odd. This says det(A) = 0, so A is not invertible.

6.2.55 Let $D : \mathbb{R}^{n \times n} \to \mathbb{R}$ be a function such that D is linear in the rows, D(B) = -D(A) if B is a matrix formed from swapping two rows of A, and D(I) = 1. Show that $D(A) = \det(A)$.

Solution: From the properties of D, we can deduce the following:

- $D(B) = \frac{1}{k}D(A)$ if B is obtained by dividing a row of A by k.
- D(A) = 0 if two rows of A are the same.
- If B is given by adding a multiple of a row of A to another, then D(B) = D(A).

In particular, that says row reduction has the same effect on D that it has on the determinant. The same proof of the algorithm in the textbook goes through (since it only used these properties!), so we have $D(A) = (-1)^{s} k_1 \dots k_r D(\operatorname{rref}(A))$, where you swap rows s times and divide rows by scalars k_1, \dots, k_r while performing the row reduction. If A is invertible, then $\operatorname{rref}(A) = I$, so $D(\operatorname{rref}(A)) = 1$ says $D(A) = (-1)^{s} k_1 \dots k_r = \det(A)$. If A is not invertible, then $\operatorname{rref}(A)$ has a row of zeroes, so $D(\operatorname{rref}(A)) = 0$ (again, the same proof that $\det(A) = 0$ if A has a row of zeroes still goes through!) which says $D(A) = 0 = \det(A)$. This shows that $D(A) = \det(A)$ as desired.

Since any matrix corresponds to a *n*-tuple of vectors (v_1, \ldots, v_n) where $v_i \in \mathbb{R}^n$ and vice-versa by making the vectors v_i the rows of a matrix A (or columns), we may think of D as a function from $V^n \to \mathbb{R}$, (for us, we take $V = \mathbb{R}^n$), by saying $D(v_1, \ldots, v_n) = D\left(\begin{pmatrix} -v_1 - \\ \vdots \\ -v_n - \end{pmatrix}\right)$. Then the function $D(v_1, \ldots, v_n)$ is linear in each variable.

Then the function $D(v_1, \ldots, v_n)$ is linear in each variable,

 $D(v_1, \ldots, v_i, \ldots, v_j, \ldots, v_n) = -D(v_1, \ldots, v_j, \ldots, v_i, \ldots, v_n)$, and $D(e_1, \ldots, e_n) = 1$. A function $V^n \to \mathbb{R}$ satisfying the first two properties is called an *alternating multi-linear n-form* on V. This problem shows that there is a unique alternating multi-linear *n*-form on \mathbb{R}^n that maps the basis $\{e_1, \ldots, e_n\}$ of \mathbb{R}^n to 1. In more advanced courses (typically at the graduate level) where you need linear algebra, this unique map is often times taken as the *definition* of the determinant!

6.2.56 Prove that det(AM) = det(A) det(M).

 $\langle -r_1 - \rangle$

Solution: First suppose that M is not invertible. Then M has a non-trivial kernel. Say $x \in \ker(M)$. Then (AM)x = A(Mx) = 0, so AM is also not invertible. This says $\det(AM) = 0$, and since $\det(M) = 0$, we have $\det(A) \det(M) = 0$, so $\det(AM) = \det(A) \det(M)$ in this case.

Now suppose that M is invertible. Consider the function $D(A) = \frac{\det(AM)}{\det(M)}$. We will show that D has the properties listed in the previous problem, so that $D(A) = \det(A)$. We have $D(I) = \frac{\det(M)}{\det(M)} = 1$. By how matrix multiplication works, if we swap a row of A, it swaps a row of AM (write down A in terms of rows and M in terms of columns to easily compute the entries of AM if this is not clear!). Since swapping a row of AM negates $\det(AM)$, this says swapping a row of A negates the sign of D(A). Finally, we just need to check that D(A) is linear as a function

of each row. Write
$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ -r_i & \vdots \\ -r_n & - \end{pmatrix}$$
 in terms of rows and $M = \begin{pmatrix} 1 & 1 & 1 & 1 \\ c_1 & \dots & c_i & \dots & c_n \\ 1 & 1 & 1 & 1 \end{pmatrix}$ in terms of columns. We have $\begin{pmatrix} -r_1 & 1 & 1 & 1 \\ -kv + w & -1 & 1 \\ -kv + w & -1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 & 1 & 1 \\ c_1 & \dots & c_i & \dots & c_n \\ 1 & 1 & 1 & 1 \end{pmatrix} = k \begin{pmatrix} -r_1 & -1 & 1 \\ -v & -1 & 1 \\ -v & -1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 & 1 & 1 \\ -r_n & -1 & 1 \end{pmatrix}$ $\begin{pmatrix} -r_1 & -1 & 1 \\ -r_n & -1 & -1 \end{pmatrix}$ $\begin{pmatrix} -r_1 & -1 & 1 \\ -r_n & -1 & -1 \end{pmatrix}$ $\begin{pmatrix} -r_1 & -1 & 1 \\ -r_n & -1 & -1 \end{pmatrix}$ $\begin{pmatrix} -r_1 & -1 & -1 \\ -r_n & -1 & -1 \end{pmatrix}$ $\begin{pmatrix} -r_1 & -1 & -1 \\ -r_n & -1 & -1 \end{pmatrix}$ $\begin{pmatrix} -r_1 & -1 & -1 \\ -r_n & -1 & -1 \end{pmatrix}$ $\begin{pmatrix} -r_1 & -1 & -1 \\ -r_n & -1 & -1 \end{pmatrix}$ $= kA_vM + A_wM$, where A_v and A_w are the matrices where $\frac{1}{2} -r_n - \frac{1}{2} -r_n - \frac{1}{2}$

you replace the *i*-th row with the vectors v and w. This says as a function of the *i*-th row, that $D(kv+w) = \frac{\det(kA_vM+A_wM)}{\det(M)} = \frac{k \det(A_vM) + \det(A_wM)}{\det(M)} = k \frac{\det(A_vM)}{\det(M)} + \frac{\det(A_wM)}{\det(M)} = kD(v) + D(w)$ since the determinant is linear as a function of the *i*-th row. It's obvious that D(0) = 0, so this proves that D is linear. By the previous problem, this says that $D(A) = \det(A)$, so that $\det(AM) = \det(A) \det(M)$ as desired.