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6.1.21 For what values of k is A =

k 1 1
1 k 1
1 1 k

 invertible?

Solution: We have A is invertible if and only if det(A) 6= 0. Expanding the determinant out

along the first row, det(A) = k det

(
k 1
1 k

)
−det

(
1 1
1 k

)
+ det

(
1 k
1 1

)
= k(k2− 1)− (k− 1) +

(1− k) = k3 − 3k + 2 = (k − 1)2(k + 2). We then see that det(A) 6= 0 for k 6= 1,−2.

6.1.29 Find the values of λ that make A− λI not invertible, where A =

3 5 6
0 4 2
0 2 7

.

Solution: We have A − λI =

3− λ 5 6
0 4− λ 2
0 2 7− λ

. Then A − λI is not invertible if and

only if det(A−λI) = 0. Expanding the determinant out along the first column, det(A−λI) =

(3−λ) det

(
4− λ 2

2 7− λ

)
= (3−λ)[(4−λ)(7−λ)−4)] = −(λ−3)2(λ−8). Therefore, λ = 3, 8

are the values we seek.

6.1.43 If A is an n× n matrix, what is the relationship between det(A) and det(−A)?

Solution: Write A =


v1
v2
...
vn

 where vi are the rows of A. Then −A =


−v1
−v2

...
−vn

. The deter-

minant is linear as a function of each fixed row. As a function of the first row, det(−A) =

−det


v1
−v2

...
−vn

. As a function of the second row, det


v1
−v2

...
−vn

 = −det


v1
v2
...
−vn

, so det(−A) =

(−1)2 det


v1
v2
...
−vn

. Continuing this logic, we eventually find det(−A) = (−1)n det(A).

6.1.57 What are the possible determinants for a permutation matrix?

Solution: Let A be an n × n permutation matrix, so that A has exactly one 1 in each row
and column. Say the columns of A are v1, . . . , vn, so by definition, vi = ej for some j, where
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ej is a standard basis vector of Rn. If T is the linear transformation associated to A, since
T (ei) = vi, this says that T just permutes the set of basis vectors {e1, . . . , en} of Rn into the
set {v1, . . . , vn}. We can define an inverse of T by defining T−1(vi) = ei (note that {v1, . . . , vn}
is a basis, so this is all we need to define a linear transformation!), and then it’s clear that
T (T−1(vi)) = vi and T−1(T (ei)) = ei. Furthermore, by construction, T−1 itself is just another
permutation, so that A−1 is a permutation matrix. This says that A and A−1 are both matrices
with integer entries, so by 6.2.37 this says det(A) = ±1.

6.2.15 LetA be a 4×4 matrix with rows vi. Suppose that det(A) = 8. What is det


v1

v1 + v2
v1 + v2 + v3

v1 + v2 + v3 + v4

?

Solution: Perform row reduction: subtract row 3 from row 4, row 2 from row 3, and row 1

from row 2. We find det


v1

v1 + v2
v1 + v2 + v3

v1 + v2 + v3 + v4

 = det(A) = 8.

6.2.31 A Vandermonde matrix is an n× n matrix of the form A =


1 1 . . . 1
a0 a1 . . . an
a20 a21 . . . a2n
...

...
...

...
an0 an1 . . . ann

. Vander-

monde showed that det(A) =
∏

i>j(ai − aj).

(a) Verify this for n = 1.

(b) Suppose that the formula holds for any n − 1 × n − 1 Vandermonde matrix. Define f(t) =

det


1 1 . . . 1 1
a0 a1 . . . an−1 t
a20 a21 . . . a2n−1 t2

...
...

...
...

...
an0 an1 . . . ann−1 tn

. Show that f(t) is a degree n polynomial with roots a0, a1, . . . , an−1.

Let k be the coefficient of tn in f(t). Conclude that f(t) = k(t − a0) . . . (t − an−1) for some
k. Plugging in an−1, deduce Vandermonde’s formula.

Solution:

(a) We have det

(
1 1
a0 a1

)
= a1 − a0, so the formula holds.

(b) Expand the determinant of the matrix out along the last column, it’s then easy to see that
it must be a degree n polynomial in the variable t. Using the formula for the cofactor ex-

pansion, the coefficient k of tn is given by (−1)2n det(Ann) = det


1 1 . . . 1
a0 a1 . . . an−1

a20 a21 . . . a2n−1
...

...
...

...
an−1
0 an−1

1 . . . an−1
n−1

 =

∏
n−1≥i>j(ai − aj) by assumption, since this is an n − 1 × n − 1 Vandermonde matrix.
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Now, f(a0) = f(a1) = . . . = f(an−1) = 0, because the matrix will have a repeated column
and therefore will not be invertible, and thus have 0 determinant. Since f(t) is a degree
n polynomial and we have found n roots of f(t), this says f(t) = k(t− a0) . . . (t− an−1).

If we plug in t = an, we find det(A) = k(an − a0) . . . (an − an−1) =

(∏
n−1≥i>j(ai −

aj)

)
(an−a0) . . . (an−an−1) =

∏
n≥i>j(ai−aj). By induction, this proves Vandermonde’s

formula!

6.2.37 Consider an n× n matrix A such that both A and A−1 have integer entries. What are the
possible values for det(A)?

Solution: The key fact is that the determinant of a matrix A is a polynomial in the entries of
the matrix A as a result of the cofactor expansion formula. In particular, since A and A−1 both
have integer entries, det(A) and det(A−1) are just sums of products of integers, and therefore
both integers. Since det(A) det(A−1) = det(I) = 1, this forces det(A) = det(A−1) = ±1, since
these are the only integer solutions to xy = 1.

6.2.41 Suppose A is an n×n skew-symmetric matrix, where n is odd. Show that A is not invertible.

Solution: Since A is skew-symmetric, we have A = −At. Then det(A) = det(−At) =
(−1)n det(At) = (−1)n det(A) = − det(A) since n is odd. This says det(A) = 0, so A is
not invertible.

6.2.55 Let D : Rn×n → R be a function such that D is linear in the rows, D(B) = −D(A) if B is
a matrix formed from swapping two rows of A, and D(I) = 1. Show that D(A) = det(A).

Solution: From the properties of D, we can deduce the following:

• D(B) = 1
kD(A) if B is obtained by dividing a row of A by k.

• D(A) = 0 if two rows of A are the same.

• If B is given by adding a multiple of a row of A to another, then D(B) = D(A).

In particular, that says row reduction has the same effect on D that it has on the determi-
nant. The same proof of the algorithm in the textbook goes through (since it only used these
properties!), so we have D(A) = (−1)sk1 . . . krD(rref(A)), where you swap rows s times and
divide rows by scalars k1, . . . , kr while performing the row reduction. If A is invertible, then
rref(A) = I, so D(rref(A)) = 1 says D(A) = (−1)sk1 . . . kr = det(A). If A is not invertible,
then rref(A) has a row of zeroes, so D(rref(A)) = 0 (again, the same proof that det(A) = 0 if
A has a row of zeroes still goes through!) which says D(A) = 0 = det(A). This shows that
D(A) = det(A) as desired.

Since any matrix corresponds to a n-tuple of vectors (v1, . . . , vn) where vi ∈ Rn and vice-versa
by making the vectors vi the rows of a matrix A (or columns), we may think of D as a function

from V n → R, (for us, we take V = Rn), by saying D(v1, . . . , vn) = D

(-v1-
...

-vn-

).

Then the function D(v1, . . . , vn) is linear in each variable,

Page 3



D(v1, . . . , vi, . . . , vj , . . . , vn) = −D(v1, . . . , vj , . . . , vi, . . . , vn), and D(e1, . . . , en) = 1. A func-
tion V n → R satisfying the first two properties is called an alternating multi-linear n-form on
V . This problem shows that there is a unique alternating multi-linear n-form on Rn that maps
the basis {e1, . . . , en} of Rn to 1. In more advanced courses (typically at the graduate level)
where you need linear algebra, this unique map is often times taken as the definition of the
determinant!

6.2.56 Prove that det(AM) = det(A) det(M).

Solution: First suppose that M is not invertible. Then M has a non-trivial kernel. Say
x ∈ ker(M). Then (AM)x = A(Mx) = 0, so AM is also not invertible. This says det(AM) = 0,
and since det(M) = 0, we have det(A) det(M) = 0, so det(AM) = det(A) det(M) in this case.

Now suppose that M is invertible. Consider the function D(A) = det(AM)
det(M) . We will show that

D has the properties listed in the previous problem, so that D(A) = det(A). We have D(I) =
det(M)
det(M) = 1. By how matrix multiplication works, if we swap a row of A, it swaps a row of AM

(write down A in terms of rows and M in terms of columns to easily compute the entries of AM
if this is not clear!). Since swapping a row of AM negates det(AM), this says swapping a row
of A negates the sign of D(A). Finally, we just need to check that D(A) is linear as a function

of each row. Write A =



-r1-
...

-ri-
...

-rn-

 in terms of rows and M =

 p p p
c1 . . . ci . . . cn
p p p

 in terms of

columns. We have



-r1-
...

-kv + w-
...

-rn-


 p p p
c1 . . . ci . . . cn
p p p

 = k



-r1-
...

-v-
...

-rn-


 p p p
c1 . . . ci . . . cn
p p p

+



-r1-
...

-w-
...

-rn-


 p p p
c1 . . . ci . . . cn
p p p

 = kAvM + AwM , where Av and Aw are the matrices where

you replace the i-th row with the vectors v and w. This says as a function of the i-th row, that

D(kv+w) = det(kAvM+AwM)
det(M) = k det(AvM)+det(AwM)

det(M) = k det(AvM)
det(M) + det(AwM)

det(M) = kD(v) +D(w)

since the determinant is linear as a function of the i-th row. It’s obvious that D(0) = 0, so
this proves that D is linear. By the previous problem, this says that D(A) = det(A), so that
det(AM) = det(A) det(M) as desired.
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