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6.1.21 For what valuesof kis A= [ 1 1 | invertible?
1 k

Solution: We have A is invertible if and only if det(A) # 0. Expanding the determinant out

along the first row, det(A) = kdet (l; }f) —det (1 ]lg) +det (} ]f) =k(k*-1)—(k—1)+

(1—k)=k>—3k+2=(k—1)2(k +2). We then see that det(A) # 0 for k # 1, —2.

3 5 6
6.1.29 Find the values of A that make A — A\l not invertible, where A= |0 4 2
0 2 7
3—A 5 6
Solution: We have A — A\ = 0 4— X\ 2 . Then A — X is not invertible if and
0 2 7T—A

only if det(A — AT) = 0. Expanding the determinant out along the first column, det(A — \I) =

(3-Ndet [+ 7:) — (B=A)[(4=A)(T=A)—4)] = —(A—3)(A—8). Therefore, A — 3,8

are the values we seek.

6.1.43 If A is an n X n matrix, what is the relationship between det(A) and det(—A)?

U1 —U
) —U2
Solution: Write A = | . | where v; are the rows of A. Then —A = . . The deter-
Un, —Un
minant is linear as a function of each fixed row. As a function of the first row, det(—A) =
U1 U1 U1
—U2 —U2 U2
—det | . |. As a function of the second row, det | . =—det| . |,sodet(—-A) =
—v,, - —Up
U1
V2
(—=1)2det | . |. Continuing this logic, we eventually find det(—A) = (—1)" det(A).
—vy,
6.1.57 What are the possible determinants for a permutation matrix?
Solution: Let A be an n X n permutation matrix, so that A has exactly one 1 in each row
and column. Say the columns of A are vi,..., vy, so by definition, v; = e; for some j, where




e; is a standard basis vector of R™. If T' is the linear transformation associated to A, since
T(e;) = v;, this says that T just permutes the set of basis vectors {e,...,e,} of R into the
set {v1,...,v,}. We can define an inverse of T by defining T~ (v;) = e; (note that {v1,...,v,}
is a basis, so this is all we need to define a linear transformation!), and then it’s clear that
T(TY(v;)) = v; and T~Y(T'(e;)) = e;. Furthermore, by construction, 71 itself is just another
permutation, so that A~! is a permutation matrix. This says that A and A~! are both matrices
with integer entries, so by 6.2.37 this says det(A4) = +1.

U1
6.2.15 Let A be a 4x4 matrix with rows v;. Suppose that det(A4) = 8. What is det V1 + v ?
V1 + V2 + U3
V1 + v + U3 + Uy
Solution: Perform row reduction: subtract row 3 from row 4, row 2 from row 3, and row 1
vy
V1 + Vg
f 2. We find det = det(A) = 8.
Tom row e find de V1 + Vs + V3 et(A)
U1 + V2 + U3 + Vg
1 1 ... 1
ap aip o Qp
2 2 2
6.2.31 A Vandermonde matriz is an n X n matrix of the form A= | %0 91 @y |. Vander-
ag ay ay
monde showed that det(A) = [[;. ;(a; — a;).
(a) Verify this for n = 1.
(b) Suppose that the formula holds for any n — 1 x n — 1 Vandermonde matrix. Define f(t) =
1 1 ... 1 1
ag aq cee Qp—1 t
2 2 2 2
det | @ 01 --- a1 | Show that f(t)is a degree n polynomial with roots ag, a1, . . ., an_1.
a; at ... ap_; t"

Let k be the coefficient of ¢™ in f(t). Conclude that f(t) = k(t — ag) ... (¢t — ap—1) for some
k. Plugging in a,_1, deduce Vandermonde’s formula.

Solution:

1

(a) We have det (
ao

al ) = a1 — ag, so the formula holds.
1

(b) Expand the determinant of the matrix out along the last column, it’s then easy to see that
it must be a degree n polynomial in the variable t. Using the formula for the cofactor ex-

1 1 . 1
Qg al e Qp-—1
2 2 2
pansion, the coefficient k of t" is given by (—1)?" det(A,,,,) = det | @0 T
ag™t et L a7

Hn_1>i>j(ai — a;) by assumption, since this is an n — 1 x n — 1 Vandermonde matrix.
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Now, f(ao) = f(a1) = ... = f(an—1) = 0, because the matrix will have a repeated column
and therefore will not be invertible, and thus have 0 determinant. Since f(¢) is a degree
n polynomial and we have found n roots of f(t), this says f(t) = k(t —ag)...(t —apn—1).

If we plug in ¢ = ay, we find det(4) = k(an —ao)...(an — an—1) = | [[,_15i>;(a —

aj) J(an—ao)...(an—an—1) = [[, 5~ ;(ai—a;). By induction, this proves Vandermonde’s

formula!

6.2.37 Consider an n x n matrix A such that both A and A~! have integer entries. What are the
possible values for det(A)?

Solution: The key fact is that the determinant of a matrix A is a polynomial in the entries of
the matrix A as a result of the cofactor expansion formula. In particular, since A and A~! both
have integer entries, det(A) and det(A~!) are just sums of products of integers, and therefore
both integers. Since det(A)det(A™!) = det(I) = 1, this forces det(A) = det(A~!) = +£1, since
these are the only integer solutions to xy = 1.

6.2.41 Suppose A is an n X n skew-symmetric matrix, where n is odd. Show that A is not invertible.

Solution: Since A is skew-symmetric, we have A = —A’. Then det(A) =
(—=1)"det(A?) = (=1)"det(A) = —det(A) since n is odd. This says det(A)
not invertible.

det(—A?) =
=0, so A is

6.2.55 Let D : R"*™ — R be a function such that D is linear in the rows, D(B) = —D(A) if B is
a matrix formed from swapping two rows of A, and D(I) = 1. Show that D(A) = det(A).

Solution: From the properties of D, we can deduce the following;:
e D(B) = £D(A) if B is obtained by dividing a row of A by k.
e D(A) =0 if two rows of A are the same.
e If B is given by adding a multiple of a row of A to another, then D(B) = D(A).

In particular, that says row reduction has the same effect on D that it has on the determi-
nant. The same proof of the algorithm in the textbook goes through (since it only used these
properties!), so we have D(A) = (—1)%ky ... k.D(rref(A)), where you swap rows s times and
divide rows by scalars ki, ..., k, while performing the row reduction. If A is invertible, then
rref(A) = I, so D(rref(A)) = 1 says D(A) = (—=1)%k;y ... k. = det(A). If A is not invertible,
then rref(A) has a row of zeroes, so D(rref(A)) = 0 (again, the same proof that det(A) = 0 if
A has a row of zeroes still goes through!) which says D(A) = 0 = det(A). This shows that
D(A) = det(A) as desired.

Since any matrix corresponds to a n-tuple of vectors (v1,...,v,) where v; € R™ and vice-versa
by making the vectors v; the rows of a matrix A (or columns), we may think of D as a function
_Ul_
from V™ — R, (for us, we take V' = R"), by saying D(v1,...,v,) = D( )
_Un_
Then the function D(vy,...,vy,) is linear in each variable,
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D(vi,...,0,...,05,...,0y) = —D(v1,...,v5,...,0;,...,0,), and D(e1,...,e,) = 1. A func-
tion V™ — R satisfying the first two properties is called an alternating multi-linear n-form on
V. This problem shows that there is a unique alternating multi-linear n-form on R™ that maps
the basis {e1,...,e,} of R™ to 1. In more advanced courses (typically at the graduate level)
where you need linear algebra, this unique map is often times taken as the definition of the
determinant!

6.2.56 Prove that det(AM) = det(A) det(M).

Solution: First suppose that M is not invertible. Then M has a non-trivial kernel. Say
x € ker(M). Then (AM)z = A(Mz) = 0, so AM is also not invertible. This says det(AM) = 0,
and since det(M) = 0, we have det(A) det(M) = 0, so det(AM) = det(A) det(M) in this case.
Now suppose that M is invertible. Consider the function D(A) = dgzgé\%). We will show that
D has the properties listed in the previous problem, so that D(A) = det(A). We have D(I) =

jgtg%; = 1. By how matrix multiplication works, if we swap a row of A, it swaps a row of AM

(write down A in terms of rows and M in terms of columns to easily compute the entries of AM
if this is not clear!). Since swapping a row of AM negates det(AM), this says swapping a row
of A negates the sign of D(A). Finally, we just need to check that D(A) is linear as a function

_’,“1_
: | | [
of each row. Write A = | -r;- | intermsof rowsand M = | ¢ ... ¢ ... ¢, | interms of
| | [
_T’n_
_7"1_ _7"1_
: | [ [ | | [
columns. We have | -kv 4+ w- €1 ... GG ... Cp| =k -v- C1 ... G ... Cp |+
| [ [ [ | [
_Tn_ _/)"n_
_’,“1_
: | | |
-w- €1 ... ¢ ... cp| =kAM + A,M, where A, and A, are the matrices where
| [ |
_”'n_

you replace the i-th row with the vectors v and w. This says as a function of the i-th row, that

det(kA, M+A., M kdet(A, M)+det(A, M det(A, M det(A, M
D(kv+w) = ( det(M) L = ( det)(M) ( b=k de(t(M)) + dét(M)) = kD(v) + D(w)

since the determinant is linear as a function of the i-th row. It’s obvious that D(0) = 0, so
this proves that D is linear. By the previous problem, this says that D(A) = det(A), so that
det(AM) = det(A) det(M) as desired.
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