Selected Solutions to Homwork 6 Tim Smits

5.2.27 Find the QR decomposition of $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 2 \\ 1 & 0 & 1 \\ 1 & 1 & -1 \end{pmatrix}$.

 $\begin{array}{l} \textbf{Solution:} \ \text{Let the columns of } A \ \text{be } v_1, v_2, v_3. \ \text{Set } u_1 = v_1/\|v_1\| = v_1/2 = (1/2, 1/2, 1/2, 1/2, 1/2). \\ \text{Then } v_2^{\perp} = v_2 - (u_1 \cdot v_2)u_1 = v_2 - u_1 = (1/2, -1/2, -1/2, 1/2). \ \text{Since } v_2^{\perp} \ \text{is a unit vector}, \ v_2 = u_2. \\ \text{We then take } v_3^{\perp} = v_3 - (u_1 \cdot v_3)u_1 - (u_2 \cdot v_3)u_2 = v_3 - u_1 + 2u_2 = (1/2, 1/2, -1/2, -1/2), \ \text{which} \\ \text{is a unit vector, so } u_3 = v_3^{\perp}. \ \text{We then have } v_1 = 2u_1, \ v_2 = u_1 + u_2 \ \text{and } v_3 = u_1 - 2u_2 + u_3, \ \text{so} \\ Q = \begin{pmatrix} 1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & 1/2 \\ 1/2 & -1/2 & -1/2 \\ 1/2 & 1/2 & -1/2 \end{pmatrix} \ \text{and} \ R = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}. \\ \end{array}$

5.3.27 Let A be an $n \times m$ matrix, $v \in \mathbb{R}^m$ and $w \in \mathbb{R}^n$. Show that $(Av) \cdot w = v \cdot (A^t w)$.

Solution: We have $(Av) \cdot w = w^t Av$. On the other hand, $v \cdot (A^t w) = (A^t w)^t v = w^t Av$.

5.3.29 Show that an orthogonal linear transformation $L : \mathbb{R}^n \to \mathbb{R}^n$ preserves angles: the angle between v and w in \mathbb{R}^n is the same as that of L(v) and L(w). Conversely, is any linear transformation that preserves angles orthogonal?

Solution: Let A be the matrix of L. Since L is orthogonal, $L(v) \cdot L(w) = (Av) \cdot (Aw) = w^t A^t Av = w^t v = v \cdot w$, since A is an orthogonal matrix. We have $v \cdot w = \|v\| \|w\| \cos(\theta)$ where θ is the angle between v and w. Similarly, $L(v) \cdot L(w) = \|L(v)\| \|L(w)\| \cos(\theta')$ where θ' is the angle between L(v) and L(w). Since L is orthogonal, we have $\|L(v)\| = \|v\|$ and $\|L(w)\| = \|w\|$, so this then says $\cos(\theta) = \cos(\theta')$. Since $0 \le \theta, \theta' \le \pi$, this then says $\theta = \theta'$.

The converse is false; take for example, L(x) = 2x, which just scales vectors by a factor of two. Then L is not orthogonal because it doesn't preserve length, but it obviously preserves angles.

5.3.31 Are the rows of an orthogonal matrix orthonormal?

Solution: Yes – since A is orthogonal, $A^{-1} = A^t$, which then tells us that A^t is also orthogonal. The columns of A^t are then orthonormal, but these are of course just the rows of A.

5.3.69 Find the matrix of Proj_W where $W = \operatorname{Span}\{(1, 1, -1, 0), (0, 1, 1, -1)\}$.

Solution: An orthonormal basis of W is given by $\{(1/\sqrt{3}, 1/\sqrt{3}, -1/\sqrt{3}, 0), (0, 1/\sqrt{3}, 1/\sqrt{3}, -1/\sqrt{3})\}$ since the given vectors are already orthogonal. Let $Q = \begin{pmatrix} 1/\sqrt{3} & 0\\ 1/\sqrt{3} & 1/\sqrt{3}\\ -1/\sqrt{3} & 1/\sqrt{3}\\ 0 & -1/\sqrt{3} \end{pmatrix}$. Then $\operatorname{Proj}_W = \begin{pmatrix} 1/3 & 1/3 & -1/3 & 0\\ 1/3 & 2/3 & 0 & -1/3\\ -1/3 & 0 & 2/3 & -1/3\\ 0 & -1/3 & -1/3 & 1/3 \end{pmatrix}$.

5.4.3 Let V be a subspace of \mathbb{R}^n . Let v_1, \ldots, v_p be a basis of V and w_1, \ldots, w_q be a basis of V^{\perp} . Are $v_1, \ldots, v_p, w_1, \ldots, w_q$ a basis of \mathbb{R}^n ?

Solution: Yes – since $p+q = \dim(V) + \dim(V^{\perp}) = n$, we just need to show that $v_1, \ldots, v_p, w_1, \ldots, w_q$ are linearly independent. Suppose that $c_1v_1 + \ldots + c_pv_p + d_1w_1 + \ldots + d_qw_q = 0$. Then subtracting says $c_1v_1 + \ldots + c_pv_p = -d_1w_1 - \ldots - d_qw_q$. The right hand side is a vector in V^{\perp} , while the left hand side is a vector in V. Since $V \cap V^{\perp} = \{0\}$, this says $c_1v_1 + \ldots + c_pv_p = 0$. Since the v_i are a basis of V, we see all $c_i = 0$. From our original equation, we then have $d_1w_1 + \ldots + d_qw_q = 0$, and since w_i are a basis of V^{\perp} , this says all $d_i = 0$. This shows $v_1, \ldots, v_p, w_1, \ldots, w_q$ are linearly independent vectors, and therefore a basis of \mathbb{R}^n .

5.4.11 Consider L(x) = Ax, a linear transformation from $\mathbb{R}^n \to \mathbb{R}^m$ where A is an $m \times n$ matrix of rank m. Define the *pseudo-inverse* of L, L^+ , to be the linear transformation $L^+ : \mathbb{R}^m \to \mathbb{R}^n$ with $L^+(y) = \{$ the minimal solution to $L(x) = y \}.$

- (a) Show that L^+ is linear.
- (b) What is $L(L^+(y))$?
- (c) What is $L^+(L(x))$?
- (d) Determine $im(L^+)$ and $ker(L^+)$.
- (e) Find L^+ for $L(x) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} x$.

Solution:

- (a) From problem 5.4.10, the minimal solution of L(x) = y is defined as x₀, where Ax = y, x = x_h + x₀, for x_h ∈ ker(L) and x₀ ∈ ker(L)[⊥]. That is, x₀ = Proj_{ker(L)[⊥]}(x). Unraveling the definition here, we have Ax = Ax₀ = y, and L⁺(y) = x₀. How can we solve for x₀ in terms of y? Since ker(L)[⊥] = im(L^t), we have x₀ = Proj_{im(L^t)}(x), so x₀ = A^tx^{*} where x^{*} is the least squares solution to the system A^tx^{*} = x (make sure this is clear, this is the key step!). We then have x^{*} = (AA^t)⁻¹Ax = (AA^t)⁻¹y, so x₀ = A^tx^{*} = A^t(AA^t)⁻¹y. This says L⁺(y) = A^t(AA^t)⁻¹y, so in particular, L⁺ is just multiplication by some matrix and therefore is a linear transformation.
- (b) We have $L(L^+(y)) = L(A^t(AA^t)^{-1}y) = A(A^t(AA^t)^{-1}y) = y$.
- (c) We have $L^+(L(x)) = L^+(Ax) = A^t(AA^t)^{-1}Ax$.

(d) I claim that $\operatorname{im}(L^+) = \operatorname{im}(L^t)$ and $\operatorname{ker}(L^+) = \operatorname{ker}(L^t)$. If $y \in \operatorname{im}(L^t)$, then $y = A^t(AA^t)^{-1}x$ for some x, so $y = A^t((AA^t)^{-1}x) \in \operatorname{im}(L^t)$ says $\operatorname{im}(L^+) \subset \operatorname{im}(L^t)$. If $y \in \operatorname{im}(L^t)$, then $y = A^tx$ for some x. Then $y = A^tx = A^t(AA^t)^{-1}(AA^tx) = L^+(AA^tx)$, so $y \in \operatorname{im}(L^+)$ gives $\operatorname{im}(L^t) = \operatorname{im}(L^+)$. The proof that $\operatorname{ker}(L^t) = \operatorname{ker}(L^+)$ is similar.

(e)
$$L^+(x) = A^t (AA^t)^{-1} x = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} x$$

5.4.13 Now let L(x) = Ax be a linear transformation from $\mathbb{R}^n \to \mathbb{R}^m$ (now with no conditions on rank(A)). Define the *psuedo-inverse* of L^+ to be $L^+(y) = \{$ the minimal least squares solution to $L(x) = y \}$.

- (a) Show that L^+ is linear.
- (b) What is $L^+(L(x))$?
- (c) What is $L(L^+(y))$?
- (d) Determine $im(L^+)$ and $ker(L^+)$.
- (e) Find L^+ for $L(x) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} x$.

Solution:

(a) Once more, the hardest part of this question is figuring out what everything means. The minimal least squares solution to Ax = y is given by x_0 , where $x^* = x_h + x_0$ for $x_h \in \ker(A)$ and $x_0 \in \ker(A)^{\perp}$, and x^* is a least squares solution to Ax = y (note: x_0 is independent of the choice of least squares solution by problem 10). Another way of saying this is that $x_0 = \operatorname{Proj}_{\ker(A)^{\perp}}(x^*)$. Notice that the definition is analogous to before, but we must work with x^* (since y might not be in $\operatorname{im}(A)$!).

Unlike before, we won't be able to get a nice expression for x_0 in terms of y, so we must show L^+ is linear directly. Suppose $L^+(y) = x_0$ and $L^+(y') = x'_0$. Then if x^* a least square solution to Ax = y and $x^{*'}$ is a least squares solution to Ax = y', then $A^tA(x^* + x^{*'}) = A^tAx^* + A^tAx^{*'} = A^ty + A^ty' = A^t(y + y')$, so $x^* + x^{*'}$ is a least squares solution to Ax = y + y'. This says $L^+(y + y') = \operatorname{Proj}_{\ker(A)^{\perp}}(x^* + x^{*'}) = \operatorname{Proj}_{\ker(A)^{\perp}}(x^*) + \operatorname{Proj}_{\ker(A)^{\perp}}(x^{*'}) = L^+(y) + L^+(y')$. Similarly, we can show $L^+(ky) = kL^+(y)$, so that L^+ is linear.

- (b) $L^+(L(x)) = L^+(Ax)$. The least squares solution to the system $Ax^* = Ax$ is simply $x^* = x$, so $L^+(Ax) = \operatorname{Proj}_{\operatorname{im}(A^t)}(x^*) = \operatorname{Proj}_{\operatorname{im}(A^t)}(x)$.
- (c) $L(L^+(y)) = A(L^+(y))$. Let x^* be the least squares solution to Ax = y. Then by definition, $L^+(y)$ is x_0 where $x^* = x_h + x_0$ and $x_h \in \ker(A)$ and $x^* \in \ker(A)^{\perp}$. This says $A(L^+(y)) = Ax_0 = Ax^* = \operatorname{Proj}_{\operatorname{im}(A)}(y)$.
- (d) By definition, we have $\operatorname{im}(L^+) \subset \operatorname{ker}(A)^{\perp} = \operatorname{im}(A^t)$. Given $x_0 = \operatorname{im}(A^t)$, then by part b) we have $L^+(Ax_0) = \operatorname{Proj}_{\operatorname{im}(A^t)}(x_0) = x_0$, so $\operatorname{im}(A^t) \subset \operatorname{im}(L^+)$ says $\operatorname{im}(L^+) = \operatorname{im}(A^t)$. We also see that $L^+(y) = 0$ if and only if $\operatorname{Proj}_{\operatorname{im}(A^t)}(x^*) = 0$, where x^* is the least squares solution to Ax = y. This is equivalent to saying that $x^* \in \operatorname{im}(A^t)^{\perp} = \operatorname{ker}(A)$, so that $Ax^* = 0$. However, this is equivalent to saying that $\operatorname{Proj}_{\operatorname{im}(A)}(y) = 0$, which happens if and only if $y \in \operatorname{im}(A)^{\perp} = \operatorname{ker}(A^t)$. This shows $\operatorname{ker}(L^+) = \operatorname{ker}(A^t)$.

(e) To compute the matrix of $L^+ : \mathbb{R}^2 \to \mathbb{R}^3$, we compute $L^+(e_1)$ and $L^+(e_2)$, where e_1 and e_2 are the standard basis vectors of \mathbb{R}^2 . We have $L^+(e_1) = \operatorname{Proj}_{\operatorname{im}(A^t)}(x^*)$, where x^* is the least squares solution to $Ax = e_1$. We compute that $x^* = (1/2, 0, 0)$, and this is already in $\begin{pmatrix} 1/2 & 0 \end{pmatrix}$

im (A^t) , so $x_0 = (1/2, 0, 0)$. We similarly find $L^+(e_2) = (0, 0, 0)$, so $L^+(y) = \begin{pmatrix} 1/2 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} y$.

5.4.19 Find the least squares solution to Ax = b where $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $b = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

Solution: We need to solve $A^tAx^* = A^tb$. Since $A^tA = I$, this says $x^* = A^tb = (1, 1)$.

5.4.35 Suppose you have a function g(t) and you want to fit it to the form $f(t) = c + p \sin(t) + q \cos(t)$ on the interval $[0, 2\pi]$. The coefficients c, p, q can be determined using linear algebra as follows. First, pick n points $(a_i, g(a_i))$ (assume equally spaced, so $a_i = a_i = \frac{2\pi}{n}i$). We can find a function $f_n(t) = c_n + p_n \sin(t) + q_n \cos(t)$ that "best fits" these data points by solving the relevant least squares equation. This lets us solve for c_n, p_n, q_n . Taking a limit as $n \to \infty$ will then give c, p, q.

Let
$$A_n = \begin{pmatrix} 1 & \sin(a_1) & \cos(a_1) \\ 1 & \sin(a_2) & \cos(a_2) \\ \vdots & \vdots & \vdots \\ 1 & \sin(a_n) & \cos(a_n) \end{pmatrix}$$
 and $b_n = \begin{pmatrix} g(a_1) \\ g(a_2) \\ \vdots \\ g(a_n) \end{pmatrix}$.

(a) Compute $A_n^t A_n$ and $A_n^t b_n$.

(b) Compute $\lim_{n\to\infty} \frac{2\pi}{n} A_n^t A_n$ and $\lim_{n\to\infty} \frac{2\pi}{n} A_n^t b_n$.

(c) Find $\lim_{n\to\infty} (c_n, p_n, q_n) = (\lim_{n\to\infty} \frac{2\pi}{n} A_n^t A_n)^{-1} \lim_{n\to\infty} \frac{2\pi}{n} A_n^t b_n$.

Solution:

(a) The (i, j)-th entry of $A_n^t A_n$ is given by the *i*-th row of A_n^t dotted by the *j*-th column of A_n because of how matrix multiplication works. It's then not hard to compute $A_n^t A_n = \begin{pmatrix} n & \sum_{i=1}^n \sin(a_i) & \sum_{i=1}^n \cos(a_i) \\ \sum_{i=1}^n \sin(a_i) & \sum_{i=1}^n \sin(a_i) \cos(a_i) \end{pmatrix} \sum_{i=1}^n \sin(a_i) \cos(a_i) \end{pmatrix}$. Similarly, the *i*-th entry of $\sum_{i=1}^n \cos^2(a_i) \begin{pmatrix} \sum_{i=1}^n g(a_i) \\ \sum_{i=1}^n g(a_i) \cos(a_i) \end{pmatrix}$. At $h_n h_n$ is the *i*-th row of A_n^t dotted with b_n . We find $A_n^t b_n = \begin{pmatrix} \sum_{i=1}^n g(a_i) \\ \sum_{i=1}^n g(a_i) \cos(a_i) \end{pmatrix}$. (b) Recall the Riemann sum definition of the integral, that $\int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^n f(a + i\frac{b-a}{n})\frac{b-a}{n}$. In our case, we are trying to compute expressions of the form $\lim_{n\to\infty} \frac{2\pi}{n} \sum_{i=1}^n f(a_i) = \lim_{n\to\infty} \frac{2\pi}{n} \sum_{i=1}^n f(\frac{2\pi}{n}) = \int_0^{2\pi} f(x) \, dx$. Therefore, $\lim_{n\to\infty} A_n^t A_n = \begin{pmatrix} \int_0^{2\pi} 1 \, dx & \int_0^{2\pi} \sin(x) \, dx & \int_0^{2\pi} \sin(x) \cos(x) \, dx \\ \int_0^{2\pi} \cos(x) \, dx & \int_0^{2\pi} \sin(x) \cos(x) \, dx & \int_0^{2\pi} \cos^2(x) \, dx \end{pmatrix} = \begin{pmatrix} 2\pi & 0 & 0 \\ 0 & \pi & 0 \\ 0 & 0 & \pi \end{pmatrix}$. Similarly, we find $\lim_{n\to\infty} \frac{2\pi}{n} A_n^t b_n = \begin{pmatrix} \int_0^{2\pi} g(x) \sin(x) \, dx \\ \int_0^{2\pi} g(x) \sin(x) \, dx \\ \int_0^{2\pi} g(x) \cos(x) \, dx \end{pmatrix}$

(c) We have
$$(\lim_{n \to \infty} A_n^t A_n)^{-1} = \begin{pmatrix} \frac{1}{2\pi} & 0 & 0\\ 0 & \frac{1}{\pi} & 0\\ 0 & 0 & \frac{1}{\pi} \end{pmatrix}$$
, so $(\lim_{n \to \infty} \frac{2\pi}{n} A_n^t A_n)^{-1} \lim_{n \to \infty} \frac{2\pi}{n} A_n^t b = \begin{pmatrix} \frac{1}{2\pi} \int_0^{2\pi} g(x) \, dx\\ \frac{1}{\pi} \int_0^{2\pi} g(x) \sin(x) \, dx\\ \frac{1}{\pi} \int_0^{2\pi} g(x) \cos(x) \, dx \end{pmatrix}$.

The function $c + p\sin(x) + q\cos(x)$ is called the first order trigonometric polynomial of g(x). Recall from calculus that a "nice" function f(x) may be written as $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n$, the Taylor series of f(x) expanded around c, and that the N-th partial sums of the Taylor series are called N-th order Taylor polynomials. We have another type of series representation, called a Fourier series for "nice" 2π -periodic functions f(x), of the form $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx)$. The N-th partial sum of the Fourier series is called the N-th order trigonometric polynomial of f(x). The first order trigonometric polynomial of f(x) is of the form $\frac{a_0}{2} + a_1\cos(x) + b_1\sin(x)$. What we just showed (using linear algebra!) was that $a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) dx$, $a_1 = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(x) dx$ and $b_1 = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(x) dx$. In general, we have $a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(nx) dx$ and $b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(nx) dx$. Fourier series have extremely important applications in both pure and applied math, computer science, all disciplines of engineering, and any physical science (or sub-field) you can imagine. For a better idea of how Fourier series are related to linear algebra, see section 5.5 of the textbook.