
Selected Solutions to Homwork 6

Tim Smits

5.2.27 Find the QR decomposition of A =


1 1 0
1 0 2
1 0 1
1 1 −1

.

Solution: Let the columns of A be v1, v2, v3. Set u1 = v1/‖v1‖ = v1/2 = (1/2, 1/2, 1/2, 1/2).
Then v⊥2 = v2−(u1·v2)u1 = v2−u1 = (1/2,−1/2,−1/2, 1/2). Since v⊥2 is a unit vector, v2 = u2.
We then take v⊥3 = v3− (u1 ·v3)u1− (u2 ·v3)u2 = v3−u1 +2u2 = (1/2, 1/2,−1/2,−1/2), which
is a unit vector, so u3 = v⊥3 . We then have v1 = 2u1, v2 = u1 + u2 and v3 = u1 − 2u2 + u3, so

Q =


1/2 1/2 1/2
1/2 −1/2 1/2
1/2 −1/2 −1/2
1/2 1/2 −1/2

 and R =

2 1 1
0 1 −2
0 0 1

.

5.3.27 Let A be an n×m matrix, v ∈ Rm and w ∈ Rn. Show that (Av) · w = v · (Atw).

Solution: We have (Av) · w = wtAv. On the other hand, v · (Atw) = (Atw)tv = wtAv.

5.3.29 Show that an orthogonal linear transformation L : Rn → Rn preserves angles: the angle
between v and w in Rn is the same as that of L(v) and L(w). Conversely, is any linear transformation
that preserves angles orthogonal?

Solution: Let A be the matrix of L. Since L is orthogonal, L(v) · L(w) = (Av) · (Aw) =
wtAtAv = wtv = v ·w, since A is an orthogonal matrix. We have v ·w = ‖v‖‖w‖ cos(θ) where
θ is the angle between v and w. Similarly, L(v) · L(w) = ‖L(v)‖‖L(w)‖ cos(θ′) where θ′ is the
angle between L(v) and L(w). Since L is orthogonal, we have ‖L(v)‖ = ‖v‖ and ‖L(w)‖ = ‖w‖,
so this then says cos(θ) = cos(θ′). Since 0 ≤ θ, θ′ ≤ π, this then says θ = θ′.

The converse is false; take for example, L(x) = 2x, which just scales vectors by a factor of two.
Then L is not orthogonal because it doesn’t preserve length, but it obviously preserves angles.

5.3.31 Are the rows of an orthogonal matrix orthonormal?

Solution: Yes – since A is orthogonal, A−1 = At, which then tells us that At is also orthogonal.
The columns of At are then orthonormal, but these are of course just the rows of A.

5.3.69 Find the matrix of ProjW where W = Span{(1, 1,−1, 0), (0, 1, 1,−1)}.
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Solution: An orthonormal basis ofW is given by {(1/
√

3, 1/
√

3,−1/
√

3, 0), (0, 1/
√

3, 1/
√

3,−1/
√

3)},

since the given vectors are already orthogonal. Let Q =


1/
√

3 0

1/
√

3 1/
√

3

−1/
√

3 1/
√

3

0 −1/
√

3

. Then ProjW =

QQt =


1/3 1/3 −1/3 0
1/3 2/3 0 −1/3
−1/3 0 2/3 −1/3

0 −1/3 −1/3 1/3

.

5.4.3 Let V be a subspace of Rn. Let v1, . . . , vp be a basis of V and w1, . . . , wq be a basis of V ⊥.
Are v1, . . . , vp, w1, . . . , wq a basis of Rn?

Solution: Yes – since p+q = dim(V )+dim(V ⊥) = n, we just need to show that v1, . . . , vp, w1, . . . , wq
are linearly independent. Suppose that c1v1 + . . . + cpvp + d1w1 + . . . + dqwq = 0. Then sub-
tracting says c1v1 + . . . + cpvp = −d1w1 − . . . − dqwq. The right hand side is a vector in V ⊥,
while the left hand side is a vector in V . Since V ∩ V ⊥ = {0}, this says c1v1 + . . .+ cpvp = 0.
Since the vi are a basis of V , we see all ci = 0. From our original equation, we then have
d1w1 + . . . + dqwq = 0, and since wi are a basis of V ⊥, this says all di = 0. This shows
v1, . . . , vp, w1, . . . , wq are linearly independent vectors, and therefore a basis of Rn.

5.4.11 Consider L(x) = Ax, a linear transformation from Rn → Rm where A is an m×n matrix of
rank m. Define the pseudo-inverse of L, L+, to be the linear transformation L+ : Rm → Rn with
L+(y) = {the minimal solution to L(x) = y}.

(a) Show that L+ is linear.

(b) What is L(L+(y))?

(c) What is L+(L(x))?

(d) Determine im(L+) and ker(L+).

(e) Find L+ for L(x) =

(
1 0 0
0 1 0

)
x.

Solution:

(a) From problem 5.4.10, the minimal solution of L(x) = y is defined as x0, where Ax = y,
x = xh +x0, for xh ∈ ker(L) and x0 ∈ ker(L)⊥. That is, x0 = Projker(L)⊥(x). Unraveling

the definition here, we have Ax = Ax0 = y, and L+(y) = x0. How can we solve for x0 in
terms of y? Since ker(L)⊥ = im(Lt), we have x0 = Projim(Lt)(x), so x0 = Atx∗ where x∗

is the least squares solution to the system Atx∗ = x (make sure this is clear, this is the
key step!). We then have x∗ = (AAt)−1Ax = (AAt)−1y, so x0 = Atx∗ = At(AAt)−1y.
This says L+(y) = At(AAt)−1y, so in particular, L+ is just multiplication by some matrix
and therefore is a linear transformation.

(b) We have L(L+(y)) = L(At(AAt)−1y) = A(At(AAt)−1y) = y.

(c) We have L+(L(x)) = L+(Ax) = At(AAt)−1Ax.
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(d) I claim that im(L+) = im(Lt) and ker(L+) = ker(Lt). If y ∈ im(Lt), then y =
At(AAt)−1x for some x, so y = At((AAt)−1x) ∈ im(Lt) says im(L+) ⊂ im(Lt). If
y ∈ im(Lt), then y = Atx for some x. Then y = Atx = At(AAt)−1(AAtx) = L+(AAtx),
so y ∈ im(L+) gives im(Lt) = im(L+). The proof that ker(Lt) = ker(L+) is similar.

(e) L+(x) = At(AAt)−1x =

1 0
0 1
0 0

x.

5.4.13 Now let L(x) = Ax be a linear transformation from Rn → Rm (now with no conditions on
rank(A)). Define the psuedo-inverse of L+ to be L+(y) = {the minimal least squares solution to L(x) =
y}.

(a) Show that L+ is linear.

(b) What is L+(L(x))?

(c) What is L(L+(y))?

(d) Determine im(L+) and ker(L+).

(e) Find L+ for L(x) =

(
2 0 0
0 0 0

)
x.

Solution:

(a) Once more, the hardest part of this question is figuring out what everything means.
The minimal least squares solution to Ax = y is given by x0, where x∗ = xh + x0 for
xh ∈ ker(A) and x0 ∈ ker(A)⊥, and x∗ is a least squares solution to Ax = y (note: x0
is independent of the choice of least squares solution by problem 10). Another way of
saying this is that x0 = Projker(A)⊥(x∗). Notice that the definition is analogous to before,
but we must work with x∗ (since y might not be in im(A)!).

Unlike before, we won’t be able to get a nice expression for x0 in terms of y, so we
must show L+ is linear directly. Suppose L+(y) = x0 and L+(y′) = x′0. Then if x∗

a least square solution to Ax = y and x∗′ is a least squares solution to Ax = y′, then
AtA(x∗+x∗′) = AtAx∗+AtAx∗′ = Aty+Aty′ = At(y+y′), so x∗+x∗′ is a least squares
solution to Ax = y+y′. This says L+(y+y′) = Projker(A)⊥(x∗+x∗′) = Projker(A)⊥(x∗)+

Projker(A)⊥(x∗′) = L+(y) + L+(y′). Similarly, we can show L+(ky) = kL+(y), so that

L+ is linear.

(b) L+(L(x)) = L+(Ax). The least squares solution to the system Ax∗ = Ax is simply
x∗ = x, so L+(Ax) = Projim(At)(x

∗) = Projim(At)(x).

(c) L(L+(y)) = A(L+(y)). Let x∗ be the least squares solution to Ax = y. Then by
definition, L+(y) is x0 where x∗ = xh + x0 and xh ∈ ker(A) and x∗ ∈ ker(A)⊥. This says
A(L+(y)) = Ax0 = Ax∗ = Projim(A)(y).

(d) By definition, we have im(L+) ⊂ ker(A)⊥ = im(At). Given x0 = im(At), then by part
b) we have L+(Ax0) = Projim(At)(x0) = x0, so im(At) ⊂ im(L+) says im(L+) = im(At).

We also see that L+(y) = 0 if and only if Projim(At)(x
∗) = 0, where x∗ is the least squares

solution to Ax = y. This is equivalent to saying that x∗ ∈ im(At)⊥ = ker(A), so that
Ax∗ = 0. However, this is equivalent to saying that Projim(A)(y) = 0, which happens if

and only if y ∈ im(A)⊥ = ker(At). This shows ker(L+) = ker(At).
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(e) To compute the matrix of L+ : R2 → R3, we compute L+(e1) and L+(e2), where e1 and
e2 are the standard basis vectors of R2. We have L+(e1) = Projim(At)(x

∗), where x∗ is the
least squares solution to Ax = e1. We compute that x∗ = (1/2, 0, 0), and this is already in

im(At), so x0 = (1/2, 0, 0). We similarly find L+(e2) = (0, 0, 0), so L+(y) =

1/2 0
0 0
0 0

 y.

5.4.19 Find the least squares solution to Ax = b where A =

1 0
0 1
0 0

 and b =

1
1
1

.

Solution: We need to solve AtAx∗ = Atb. Since AtA = I, this says x∗ = Atb = (1, 1).

5.4.35 Suppose you have a function g(t) and you want to fit it to the form f(t) = c+p sin(t)+q cos(t)
on the interval [0, 2π]. The coefficients c, p, q can be determined using linear algebra as follows.
First, pick n points (ai, g(ai)) (assume equally spaced, so ai = ai = 2π

n i). We can find a function
fn(t) = cn + pn sin(t) + qn cos(t) that “best fits” these data points by solving the relevant least
squares equation. This lets us solve for cn, pn, qn. Taking a limit as n→∞ will then give c, p, q.

Let An =


1 sin(a1) cos(a1)
1 sin(a2) cos(a2)
...

...
...

1 sin(an) cos(an)

 and bn =


g(a1)
g(a2)

...
g(an)

.

(a) Compute AtnAn and Atnbn.

(b) Compute limn→∞
2π
n A

t
nAn and limn→∞

2π
n A

t
nbn.

(c) Find limn→∞(cn, pn, qn) = (limn→∞
2π
n A

t
nAn)−1 limn→∞

2π
n A

t
nbn.

Solution:

(a) The (i, j)-th entry of AtnAn is given by the i-th row of Atn dotted by the j-th column of
An because of how matrix multiplication works. It’s then not hard to compute AtnAn = n

∑n
i=1 sin(ai)

∑n
i=1 cos(ai)∑n

i=1 sin(ai)
∑n
i=1 sin2(ai)

∑n
i=1 sin(ai) cos(ai)∑n

i=1 cos(ai)
∑n
i=1 sin(ai) cos(ai)

∑n
i=1 cos2(ai)

. Similarly, the i-th entry of

Atnbn is the i-th row of Atn dotted with bn. We find Atnbn =

 ∑n
i=1 g(ai)∑n

i=1 g(ai) sin(ai)∑n
i=1 g(ai) cos(ai)

.

(b) Recall the Riemann sum definition of the integral, that
∫ b
a
f(x) dx = limn→∞

∑n
i=1 f(a+

i b−an ) b−an .
In our case, we are trying to compute expressions of the form limn→∞

2π
n

∑n
i=1 f(ai) =

limn→∞
2π
n

∑n
i=1 f( 2π

n ) =
∫ 2π

0
f(x) dx.

Therefore, limn→∞AtnAn =


∫ 2π

0
1 dx

∫ 2π

0
sin(x) dx

∫ 2π

0
cos(x) dx∫ 2π

0
sin(x) dx

∫ 2π

0
sin2(x) dx

∫ 2π

0
sin(x) cos(x) dx∫ 2π

0
cos(x) dx

∫ 2π

0
sin(x) cos(x) dx

∫ 2π

0
cos2(x) dx

 =

2π 0 0
0 π 0
0 0 π

. Similarly, we find limn→∞
2π
n A

t
nbn =


∫ 2π

0
g(x) dx∫ 2π

0
g(x) sin(x) dx∫ 2π

0
g(x) cos(x) dx


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(c) We have (limn→∞AtnAn)−1 =

 1
2π 0 0
0 1

π 0
0 0 1

π

, so (limn→∞
2π
n A

t
nAn)−1 limn→∞

2π
n A

t
nb = 1

2π

∫ 2π

0
g(x) dx

1
π

∫ 2π

0
g(x) sin(x) dx

1
π

∫ 2π

0
g(x) cos(x) dx

.

The function c + p sin(x) + q cos(x) is called the first order trigonometric polynomial
of g(x). Recall from calculus that a “nice” function f(x) may be written as f(x) =∑∞
n=0

f(n)(c)
n! (x−c)n, the Taylor series of f(x) expanded around c, and that the N -th par-

tial sums of the Taylor series are called N -th order Taylor polynomials. We have another
type of series representation, called a Fourier series for “nice” 2π-periodic functions f(x),
of the form f(x) = a0

2 +
∑∞
n=1 an cos(nx)+

∑∞
n=1 bn sin(nx). The N -th partial sum of the

Fourier series is called the N -th order trigonometric polynomial of f(x). The first order
trigonometric polynomial of f(x) is of the form a0

2 + a1 cos(x) + b1 sin(x). What we just

showed (using linear algebra!) was that a0 = 1
π

∫ 2π

0
f(x) dx, a1 = 1

π

∫ 2π

0
f(x) cos(x) dx

and b1 = 1
π

∫ 2π

0
f(x) sin(x) dx. In general, we have an = 1

π

∫ 2π

0
f(x) cos(nx) dx and

bn = 1
π

∫ 2π

0
f(x) sin(nx) dx. Fourier series have extremely important applications in both

pure and applied math, computer science, all disciplines of engineering, and any physical
science (or sub-field) you can imagine. For a better idea of how Fourier series are related
to linear algebra, see section 5.5 of the textbook.

Page 5


