Selected Solutions to Homwork 5 Tim Smits

5.1.17 Find a basis of W^{\perp} , where $W = \text{Span}\{(1, 2, 3, 4), (5, 6, 7, 8)\}.$

Solution: A vector $\vec{x} \in \mathbb{R}^n$ is an element of W^{\perp} if and only if $\vec{x} \cdot (1,2,3,4) = 0$ and $\vec{x} \cdot (5,6,7,8) = 0$. Writing $\vec{x} = (a, b, c, d)$, this says we require a + 2b + 3c + 4d = 0 and 5a + 6b + 7c + 8d = 0. Solving the system says $W^{\perp} = \text{Span}\{(1, -2, 1, 0), (2, -3, 0, 1)\}$, which is obviously linearly independent, and therefore a basis.

5.1.27 Find the orthogonal projection of $9\vec{e}_1$ onto the subspace V spanned by (2, 2, 1, 0) and (-2, 2, 0, 1).

Solution: The vectors $\vec{v}_1 = (2, 2, 1, 0)$ and $\vec{v}_2 = (-2, 2, 0, 1)$ are orthogonal, so normalize to make them orthonormal. We take $\vec{u}_1 = (2/3, 2/3, 1/3, 0)$ and $\vec{u}_2 = (-2/3, 2/3, 0, 1)$. Then $\operatorname{Proj}_V(9\vec{e}_1) = (9\vec{e}_1 \cdot \vec{u}_1)\vec{u}_1 + (9\vec{e}_1 \cdot \vec{u}_2)\vec{u}_2 = 6\vec{u}_1 - 6\vec{u}_2 = (8, 0, 2, -2).$

5.1.31 Consider orthonormal vectors $\vec{u}_1, \ldots, \vec{u}_m$ in \mathbb{R}^n , and for $\vec{x} \in \mathbb{R}^n$, set $p = (\vec{u}_1 \cdot \vec{x})^2 + \ldots + (\vec{u}_m \cdot \vec{x})^2$. What is the relationship between p and $\|\vec{x}\|^2$? When are they equal?

Solution: Let $V = \text{Span}\{\vec{u}_1, \ldots, \vec{u}_m\}$. Then notice that $\operatorname{Proj}_V(\vec{x}) = (\vec{u}_1 \cdot \vec{x})\vec{u}_1 + \ldots + (\vec{u}_m \cdot \vec{x})\vec{u}_m$. Since the \vec{u}_i are orthonormal, the Pythagorean theorem says $\|\operatorname{Proj}_V(\vec{x})\|^2 = (\vec{u}_1 \cdot \vec{x})^2 + \ldots + (\vec{u}_m \cdot \vec{x})^2 = p$. We can write $\vec{x} = \operatorname{Proj}_V(\vec{x}) + \vec{x}^{\perp}$, so again by Pythagorean theorem, $\|\vec{x}\|^2 = \|\operatorname{Proj}_V(\vec{x})\|^2 + \|\vec{x}^{\perp}\|^2 = p + \|\vec{x}^{\perp}\|^2$. Since $\|\vec{x}^{\perp}\|^2 \ge 0$, in particular, this says $p \le \|\vec{x}\|^2$. Equality holds if and only if $\|\vec{x}^{\perp}\|^2 = 0$, i.e. $\vec{x}^{\perp} = 0$ which is equivalent to saying that $\vec{x} \in V$.

5.1.39 Is there a line L in \mathbb{R}^n and a vector $\vec{x} \in \mathbb{R}^n$ such that $\vec{x} \cdot \operatorname{Proj}_L(\vec{x}) < 0$?

Solution: No; Let L be a line in \mathbb{R}^n and write $L = \text{Span}\{\vec{u}\}$ for some unit vector \vec{u} . Then $\vec{x} \cdot \text{Proj}_L(\vec{x}) = \vec{x} \cdot ((\vec{x} \cdot \vec{u})\vec{u}) = (\vec{x} \cdot \vec{u})^2 \ge 0$.

5.2.13 Perform Gram-Schmidt on the following vectors: (1, 1, 1, 1), (1, 0, 0, 1), (0, 2, 1, -1).

Solution: Set $\vec{u}_1 = \vec{v}_1/\|\vec{v}_1\| = (1/2, 1/2, 1/2, 1/2)$. Then $\vec{v}_2^{\perp} = \vec{v}_2 - (\vec{v}_2 \cdot \vec{u}_1)\vec{u}_1 = \vec{v}_2 - \vec{u}_1 = (1/2, -1/2, -1/2, 1/2)$. We actually have $\|\vec{v}_2^{\perp}\| = 1$, so $\vec{u}_2 = (1/2, -1/2, -1/2, 1/2)$. We then have $\vec{v}_3^{\perp} = \vec{v}_3 - (\vec{v}_3 \cdot \vec{u}_1)\vec{u}_1 - (\vec{v}_3 \cdot \vec{u}_2)\vec{u}_2 = \vec{v}_3 - \vec{u}_1 + 2\vec{u}_2 = (1/2, 1/2, -1/2, -1/2)$ which is again a unit vector, so $\vec{u}_3 = (1/2, 1/2, -1/2, -1/2)$. This gives us the orthonormal set $\{(1/2, 1/2, 1/2, 1/2), (1/2, -1/2, -1/2, 1/2), (1/2, -1/2, -1/2, -1/2)\}$.