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3.3.69 Let V and W be two subspaces of R™. Prove that dim(V + W) 4+ dim(V N W) = dim(V) +
dim(W).

Solution: Pick a basis i1, ..., Uy, of VNW. Extend to a basis @1, ..., U, ¥1,...,7, of V and
a basis @1, ..., U, W, ..., W, of W. The claim is that § = {@1,...,Um,01,...,Tp, W1,..., Wy}
is a basis of V 4+ W, because then dim(V+W) =m+p+q, dim(VNW) =m, dim(V) =m+p
and dim(W) = m + ¢, so the result is easily deduced.

To prove this is a basis of V 4+ W, we must show it’s a linearly independent spanning set of
V + W. First, we show 3 spans V + W: if & € V + W, then we may write £ = ¢ + @ for
some ¢ € V and some W € W. Then we may write ¥ as a linear combination of the ;’s and
the ¥;’s because they are a basis of V, and we may similarly write @/ as a linear combination
of the u;’s and the w;’s because they are a basis of W. This says £ may be written as a linear
combination of the vectors in §, so they are a spanning set of V + W.

Next, we show that 3 is linearly independent. Suppose that ciuy + ... + ¢t +d101 + ... +
dpTp + e1Wi + ... + eqly = 0 for some constants ¢;,d;, e;. Subtracting over says c1ty + ...+
CmUm + dith + ...+ dp¥Uy, = —e1W1 — ... — eqWy. The left hand side is a vector in V, because
it’s a linear combination of vectors in V. On the other hand, the right hand side is a vector
in W, because it’s a linear combination of vectors in W. Therefore, each side is actually a
vector in V N W. Then we may write —ejw; — ... — e,W,; as a linear combination of the
vectors 4; (they are a basis of VN W!): —ejwy — ... — eqWy = fith + ... + fiUm, so that
e1w; + ... + ey + frts + ... + frly = 0. Since the @; and ; are linearly independent
(they are a basis of W) this says e; = f; = 0. In particular, our original equation becomes
Lty + ...+ el +d1T1 +. ..+ dpT, = 0. Since the vectors i; and U; are linearly independent
(they are a basis of V1), this says ¢; = d; = 0. In particular, this says there is no non-trivial
linear combination of these vectors equal to 6, they are linearly independent, and therefore a
basis of V 4+ W as desired.

3.3.75 Let A be an n X n matrix. Show there are constants cg,...,c, not all 0 such that c¢ol,, +
...+ c, A" is not invertible.

Solution: Pick a non-zero vector ¢ € R™ and consider the set of vectors {7, A7, ..., A"0}. This
is a set of n + 1 vectors in R™, and since dim(R™) = n they must be linearly dependent. This
says there are constants ¢y, . .., ¢, such that cot+...4+¢c, A0 =0, i.e. (colp+...+¢, A")T = 0.

This says the matrix col, + ...+ A™ has a non-trivial kernel, so that it is not invertible.

3.3.79 Suppose that A is a nilpotent n X n matrix. Show that A™ = 0.

Solution: Since A is nilpotent, there is m such that A™ = 0. Let k be the smallest positive
integer such that A¥ = 0 and A*~1 £ 0. Pick ¥ € R" such that A*~1% # (0. By problem 78,
the vectors {7, Av, ..., A¥~15} are a linearly independent subset of k vectors in R, and since
dim(R") = n, in particular this says k < n. Then A" = A¥A"~* = 0 as desired.




3.3.81 Prove that if k£ vectors span a k-dimensional subspace of R™, they are a basis.

Solution: Let V be a k-dimensional subspace of R™ such that V' = Span{#y, ..., ¥} for some

vectors U;. To show these are a basis of V', we just need to check they are linearly independent.

Suppose that ¢17) + ... 4+ cxtp, = 0. Let T : R — R” be the linear transformation given
| |

by T(Z) = AZ where A = (01 ... U |. By rank-nullity, rank(A) + dim(ker(A)) = k.
| |

Since rank(A) = dim(im(A)) and im(A) = V by construction, this says rank(A) = k so

dim(ker(A4)) = 0, i.e. ker(A) = {0}. This says the vectors ¥; are linearly independent, so we

are done.

3.4.17 Find the coordinates of ¥ = (1,1,1—1) with respect to the basis 8 = {(1, 0, 2,0), (0, 1, 3,0),(0,0,4,1)}
of V = Span{(1,0,2,0),(0,1,3,0),(0,0,4,1)}.

Solution: Note that & = ¥, + U2 — U3, so that [Z]g = (1,1, —1).

3.4.29 Find the matrix of T' with respect to the basis 8 = {(1,1,1), (1,2, 3),(1,3,6)} where T'(Z) =

-1 1 0
AZfor A= 0 -2 2],
3 -9 6
Solution: Use the change of basis formula: Ag = S?ASg where € is the standard basis of R3.
111 111\ 3 -3 1
By definition, S§ = [1 2 3| and S/ = ($§)"' = [1 2 3 =(-3 5 =2/, s0
1 3 6 1 3 6 1 -2 1
3 -3 1 -1 1 0\ /1 11 0 00
Ag=[-3 5 -2 0 -2 2 1 2 3)]=(0 1 0.
1 -2 1 3 -9 6/ \1 3 6 0 0 2

3.4.57 Show that if A is the matrix of a reflection around a plane in R3, then A is similar to

10 0

01 0

0 0 -1
Solution: Let S be the plane of reflection. Recall that A = I3 — 2P, where P is the matrix
of the orthogonal projection onto the line in the direction of a normal vector (which we will
call 73) to S. Consider the basis 8 = {#, U, U3} of R® where ) and @ are basis vectors of S
and 73 is a vector on the line orthogonal to S (why is this a basis?). Then in S-coordinates,
we have Ag = I3 — 2P3. To compute Pg, we see what the projection P does to the basis

vectors v;. Since v; and vs are orthogonal to U3, Pv; = Pvs = 0, and since v3 is already on

0 0 O
the line in the direction of U3, then Pv3 = #i3. Thatis, Pg = |0 0 0. Plugging in gives
0 0 1
1 0 0 1 0 0
Ag= [0 1 0 |, which then says that A is similarto |0 1 0
0 0 -1 0 0 -1

3.4.71 Suppose that A is similar to B, i.e. B = S~'AS for some S.
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(a) Show that if Z € ker(B), then ST € ker(A).
(b) Prove that dim(ker(A)) = dim(ker(B)).

Solution:

(a) Suppose Z € ker(B), so BE = 0. Then 0 = (SB)Z = (AS)Z, so A(ST) = 0 says
ST € ker(A).

(b) The same argument shows that if Z € ker(A), that S~# € ker(B). Pick a basis 7y, . .., ¥
of ker(B) and a basis wi,...,we of ker(A). Then since S is invertible, the vectors
SU1,..., S0 are linearly independent vectors in ker(A), i.e. k < £. Reversing the ar-
gument says S~y ..., S~ M0, are linearly independent vectors in ker(B), i.e. k > £ so
that k = ¢ as desired.

3.37 True or false: if V and W are subspace of R", then VU W is a subspace of R".

Solution: False; Consider the two subspaces V' = Span{é;} and W = Span{é>}. Then é; €
VUW and é&o € WUW but €1 +é € VUW, so VUW is not closed under addition, and
therefore not a subspace.

3.39If v, ...,v, and W4, ...,w, are two bases of R™, there is a linear transformation 7" : R® — R"
such that T'(¥;) = ;.

Solution: True; Set § = {¢4,...,9,} and v = {w,...,@,}. Then the condition T'(¥;) = w;
| |

says that Ag = | [Wi]g ... [wWy]g | where Ag is the matrix of T in S-coordinates (note: this
| |

also says that Ag = Sf ). One can then explicitly find A (in terms of the standard coordinates)

using the change of basis formula: A = S’EA@SE.

More explicitly, SEAB is the matrix of the linear transformation 7" with respect to the bases
| | | |

Band € of R”, ie. S545 = AS = [ [T(@)]e ... [T(@)e| = (w1 ... @], and ¢ =
|
-1 -1
| | | | | |
(Sg)*1 = |4 ... U, , so we can explicitly write A = | @, ... @, U ... Ty
| | | | | |

Note: this is a very useful (and important!) computation to be able to do. Make sure you
understand how to do it!
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