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3.3.69 Let V and W be two subspaces of Rn. Prove that dim(V +W ) + dim(V ∩W ) = dim(V ) +
dim(W ).

Solution: Pick a basis ~u1, . . . , ~um of V ∩W . Extend to a basis ~u1, . . . , ~um, ~v1, . . . , ~vp of V and
a basis ~u1, . . . , ~um, ~w1, . . . , ~wq of W . The claim is that β = {~u1, . . . , ~um, ~v1, . . . , ~vp, ~w1, . . . , ~wq}
is a basis of V +W , because then dim(V +W ) = m+p+ q, dim(V ∩W ) = m, dim(V ) = m+p
and dim(W ) = m+ q, so the result is easily deduced.

To prove this is a basis of V + W , we must show it’s a linearly independent spanning set of
V + W . First, we show β spans V + W : if ~x ∈ V + W , then we may write ~x = ~v + ~w for
some ~v ∈ V and some ~w ∈ W . Then we may write ~v as a linear combination of the ~ui’s and
the ~vi’s because they are a basis of V , and we may similarly write ~w as a linear combination
of the ~ui’s and the ~wi’s because they are a basis of W . This says ~x may be written as a linear
combination of the vectors in β, so they are a spanning set of V +W .

Next, we show that β is linearly independent. Suppose that c1~u1 + . . .+ cm~um + d1~v1 + . . .+
dp~vp + e1 ~w1 + . . . + eq ~wq = ~0 for some constants ci, di, ei. Subtracting over says c1~u1 + . . . +
cm~um + d1~v1 + . . .+ dp~vp = −e1 ~w1 − . . .− eq ~wq. The left hand side is a vector in V , because
it’s a linear combination of vectors in V . On the other hand, the right hand side is a vector
in W , because it’s a linear combination of vectors in W . Therefore, each side is actually a
vector in V ∩ W . Then we may write −e1 ~w1 − . . . − eq ~wq as a linear combination of the
vectors ~ui (they are a basis of V ∩W !): −e1 ~w1 − . . . − eq ~wq = f1~u1 + . . . + fm~um, so that

e1 ~w1 + . . . + eq ~wq + f1~u1 + . . . + fm~um = ~0. Since the ~ui and ~wi are linearly independent
(they are a basis of W !) this says ei = fi = 0. In particular, our original equation becomes
c1~u1 + . . .+ cm~um + d1~v1 + . . .+ dp~vp = ~0. Since the vectors ~ui and ~vi are linearly independent
(they are a basis of V !), this says ci = di = 0. In particular, this says there is no non-trivial
linear combination of these vectors equal to ~0, they are linearly independent, and therefore a
basis of V +W as desired.

3.3.75 Let A be an n × n matrix. Show there are constants c0, . . . , cn not all 0 such that c0In +
. . .+ cnA

n is not invertible.

Solution: Pick a non-zero vector ~v ∈ Rn and consider the set of vectors {~v,A~v, . . . , An~v}. This
is a set of n+ 1 vectors in Rn, and since dim(Rn) = n they must be linearly dependent. This
says there are constants c0, . . . , cn such that c0~v+ . . .+cnA

n~v = ~0, i.e. (c0In+ . . .+cnA
n)~v = ~0.

This says the matrix c0In + . . .+An has a non-trivial kernel, so that it is not invertible.

3.3.79 Suppose that A is a nilpotent n× n matrix. Show that An = 0.

Solution: Since A is nilpotent, there is m such that Am = 0. Let k be the smallest positive
integer such that Ak = 0 and Ak−1 6= 0. Pick ~v ∈ Rn such that Ak−1~v 6= ~0. By problem 78,
the vectors {~v,A~v, . . . , Ak−1~v} are a linearly independent subset of k vectors in Rn, and since
dim(Rn) = n, in particular this says k ≤ n. Then An = AkAn−k = 0 as desired.
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3.3.81 Prove that if k vectors span a k-dimensional subspace of Rn, they are a basis.

Solution: Let V be a k-dimensional subspace of Rn such that V = Span{~v1, . . . , ~vk} for some
vectors ~vi. To show these are a basis of V , we just need to check they are linearly independent.
Suppose that c1~v1 + . . . + ck~vk = ~0. Let T : Rk → Rn be the linear transformation given

by T (~x) = A~x where A =

 p p
~v1 . . . ~vk
p p

. By rank-nullity, rank(A) + dim(ker(A)) = k.

Since rank(A) = dim(im(A)) and im(A) = V by construction, this says rank(A) = k so
dim(ker(A)) = 0, i.e. ker(A) = {~0}. This says the vectors ~vi are linearly independent, so we
are done.

3.4.17 Find the coordinates of ~x = (1, 1, 1−1) with respect to the basis β = {(1, 0, 2, 0), (0, 1, 3, 0), (0, 0, 4, 1)}
of V = Span{(1, 0, 2, 0), (0, 1, 3, 0), (0, 0, 4, 1)}.

Solution: Note that ~x = ~v1 + ~v2 − ~v3, so that [~x]β = (1, 1,−1).

3.4.29 Find the matrix of T with respect to the basis β = {(1, 1, 1), (1, 2, 3), (1, 3, 6)} where T (~x) =

A~x for A =

−1 1 0
0 −2 2
3 −9 6

,

Solution: Use the change of basis formula: Aβ = SβEAS
E
β where E is the standard basis of R3.

By definition, SEβ =

1 1 1
1 2 3
1 3 6

 and SβE = (SEβ )−1 =

1 1 1
1 2 3
1 3 6

−1 =

 3 −3 1
−3 5 −2
1 −2 1

, so

Aβ =

 3 −3 1
−3 5 −2
1 −2 1

−1 1 0
0 −2 2
3 −9 6

1 1 1
1 2 3
1 3 6

 =

0 0 0
0 1 0
0 0 2

.

3.4.57 Show that if A is the matrix of a reflection around a plane in R3, then A is similar to1 0 0
0 1 0
0 0 −1

.

Solution: Let S be the plane of reflection. Recall that A = I3 − 2P , where P is the matrix
of the orthogonal projection onto the line in the direction of a normal vector (which we will
call ~v3) to S. Consider the basis β = {~v1, ~v2, ~v3} of R3 where ~v1 and ~v2 are basis vectors of S
and ~v3 is a vector on the line orthogonal to S (why is this a basis?). Then in β-coordinates,
we have Aβ = I3 − 2Pβ . To compute Pβ , we see what the projection P does to the basis

vectors ~vi. Since ~v1 and ~v2 are orthogonal to ~v3, P ~v1 = P ~v2 = ~0, and since ~v3 is already on

the line in the direction of ~v3, then P~v3 = ~v3. That is, Pβ =

0 0 0
0 0 0
0 0 1

. Plugging in gives

Aβ =

1 0 0
0 1 0
0 0 −1

, which then says that A is similar to

1 0 0
0 1 0
0 0 −1

.

3.4.71 Suppose that A is similar to B, i.e. B = S−1AS for some S.
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(a) Show that if ~x ∈ ker(B), then S~x ∈ ker(A).

(b) Prove that dim(ker(A)) = dim(ker(B)).

Solution:

(a) Suppose ~x ∈ ker(B), so B~x = ~0. Then ~0 = (SB)~x = (AS)~x, so A(S~x) = ~0 says
S~x ∈ ker(A).

(b) The same argument shows that if ~x ∈ ker(A), that S−1~x ∈ ker(B). Pick a basis ~v1, . . . , ~vk
of ker(B) and a basis ~w1, . . . , ~w` of ker(A). Then since S is invertible, the vectors
S~v1, . . . , S~vk are linearly independent vectors in ker(A), i.e. k ≤ `. Reversing the ar-
gument says S−1 ~w1, . . . , S

−1 ~w` are linearly independent vectors in ker(B), i.e. k ≥ ` so
that k = ` as desired.

3.37 True or false: if V and W are subspace of Rn, then V ∪W is a subspace of Rn.

Solution: False; Consider the two subspaces V = Span{~e1} and W = Span{~e2}. Then ~e1 ∈
V ∪W and ~e2 ∈ W ∪W but ~e1 + ~e2 6∈ V ∪W , so V ∪W is not closed under addition, and
therefore not a subspace.

3.39 If ~v1, . . . , ~vn and ~w1, . . . , ~wn are two bases of Rn, there is a linear transformation T : Rn → Rn
such that T (~vi) = ~wi.

Solution: True; Set β = {~v1, . . . , ~vn} and γ = {~w1, . . . , ~wn}. Then the condition T (~vi) = ~wi

says that Aβ =

 p p
[~w1]β . . . [~wn]β

p p

 where Aβ is the matrix of T in β-coordinates (note: this

also says that Aβ = Sβγ ). One can then explicitly find A (in terms of the standard coordinates)

using the change of basis formula: A = SEβAβS
β
E .

More explicitly, SEβAβ is the matrix of the linear transformation T with respect to the bases

β and E of Rn, i.e. SEβAβ = AEβ =

 p p
[T (~v1)]E . . . [T (~vn)]E

p p

 =

 p p
~w1 . . . ~wn
p p

, and SβE =

(SEβ )−1 =

 p p
~v1 . . . ~vn
p p

−1, so we can explicitly writeA =

 p p
~w1 . . . ~wn
p p

 p p
~v1 . . . ~vn
p p

−1.

Note: this is a very useful (and important!) computation to be able to do. Make sure you
understand how to do it!
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