Selected Solutions to Homwork 4 Tim Smits

3.3.69 Let V and W be two subspaces of \mathbb{R}^n . Prove that $\dim(V + W) + \dim(V \cap W) = \dim(V) + \dim(W)$.

Solution: Pick a basis $\vec{u}_1, \ldots, \vec{u}_m$ of $V \cap W$. Extend to a basis $\vec{u}_1, \ldots, \vec{u}_m, \vec{v}_1, \ldots, \vec{v}_p$ of V and a basis $\vec{u}_1, \ldots, \vec{u}_m, \vec{w}_1, \ldots, \vec{w}_q$ of W. The claim is that $\beta = \{\vec{u}_1, \ldots, \vec{u}_m, \vec{v}_1, \ldots, \vec{v}_p, \vec{w}_1, \ldots, \vec{w}_q\}$ is a basis of V + W, because then $\dim(V + W) = m + p + q$, $\dim(V \cap W) = m$, $\dim(V) = m + p$ and $\dim(W) = m + q$, so the result is easily deduced.

To prove this is a basis of V + W, we must show it's a linearly independent spanning set of V + W. First, we show β spans V + W: if $\vec{x} \in V + W$, then we may write $\vec{x} = \vec{v} + \vec{w}$ for some $\vec{v} \in V$ and some $\vec{w} \in W$. Then we may write \vec{v} as a linear combination of the \vec{u}_i 's and the \vec{v}_i 's because they are a basis of V, and we may similarly write \vec{w} as a linear combination of the \vec{u}_i 's and the \vec{w}_i 's because they are a basis of W. This says \vec{x} may be written as a linear combination of the vectors in β , so they are a spanning set of V + W.

Next, we show that β is linearly independent. Suppose that $c_1\vec{u}_1 + \ldots + c_m\vec{u}_m + d_1\vec{v}_1 + \ldots + d_p\vec{v}_p + e_1\vec{w}_1 + \ldots + e_q\vec{w}_q = \vec{0}$ for some constants c_i, d_i, e_i . Subtracting over says $c_1\vec{u}_1 + \ldots + c_m\vec{u}_m + d_1\vec{v}_1 + \ldots + d_p\vec{v}_p = -e_1\vec{w}_1 - \ldots - e_q\vec{w}_q$. The left hand side is a vector in V, because it's a linear combination of vectors in V. On the other hand, the right hand side is a vector in W, because it's a linear combination of vectors in W. Therefore, each side is actually a vector in $V \cap W$. Then we may write $-e_1\vec{w}_1 - \ldots - e_q\vec{w}_q$ as a linear combination of the vectors \vec{u}_i (they are a basis of $V \cap W$!): $-e_1\vec{w}_1 - \ldots - e_q\vec{w}_q = f_1\vec{u}_1 + \ldots + f_m\vec{u}_m$, so that $e_1\vec{w}_1 + \ldots + e_q\vec{w}_q + f_1\vec{u}_1 + \ldots + f_m\vec{u}_m = \vec{0}$. Since the \vec{u}_i and \vec{w}_i are linearly independent (they are a basis of W!) this says $e_i = f_i = 0$. In particular, our original equation becomes $c_1\vec{u}_1 + \ldots + c_m\vec{u}_m + d_1\vec{v}_1 + \ldots + d_p\vec{v}_p = \vec{0}$. Since the vectors \vec{u}_i and \vec{v}_i are linearly independent (they are a basis of V!), this says $c_i = d_i = 0$. In particular, this says there is no non-trivial linear combination of these vectors equal to $\vec{0}$, they are linearly independent, and therefore a basis of V + W as desired.

3.3.75 Let A be an $n \times n$ matrix. Show there are constants c_0, \ldots, c_n not all 0 such that $c_0 I_n + \ldots + c_n A^n$ is not invertible.

Solution: Pick a non-zero vector $\vec{v} \in \mathbb{R}^n$ and consider the set of vectors $\{\vec{v}, A\vec{v}, \dots, A^n\vec{v}\}$. This is a set of n + 1 vectors in \mathbb{R}^n , and since dim $(\mathbb{R}^n) = n$ they must be linearly dependent. This says there are constants c_0, \dots, c_n such that $c_0\vec{v}+\dots+c_nA^n\vec{v}=\vec{0}$, i.e. $(c_0I_n+\dots+c_nA^n)\vec{v}=\vec{0}$. This says the matrix $c_0I_n+\dots+A^n$ has a non-trivial kernel, so that it is not invertible.

3.3.79 Suppose that A is a nilpotent $n \times n$ matrix. Show that $A^n = 0$.

Solution: Since A is nilpotent, there is m such that $A^m = 0$. Let k be the smallest positive integer such that $A^k = 0$ and $A^{k-1} \neq 0$. Pick $\vec{v} \in \mathbb{R}^n$ such that $A^{k-1}\vec{v} \neq \vec{0}$. By problem 78, the vectors $\{\vec{v}, A\vec{v}, \dots, A^{k-1}\vec{v}\}$ are a linearly independent subset of k vectors in \mathbb{R}^n , and since $\dim(\mathbb{R}^n) = n$, in particular this says $k \leq n$. Then $A^n = A^k A^{n-k} = 0$ as desired.

Solution: Let V be a k-dimensional subspace of \mathbb{R}^n such that $V = \operatorname{Span}\{\vec{v}_1, \ldots, \vec{v}_k\}$ for some vectors \vec{v}_i . To show these are a basis of V, we just need to check they are linearly independent. Suppose that $c_1\vec{v}_1 + \ldots + c_k\vec{v}_k = \vec{0}$. Let $T : \mathbb{R}^k \to \mathbb{R}^n$ be the linear transformation given by $T(\vec{x}) = A\vec{x}$ where $A = \begin{pmatrix} 1 & \ddots & 1 \\ \vec{v}_1 & \ldots & \vec{v}_k \\ 1 & \cdots & 1 \end{pmatrix}$. By rank-nullity, $\operatorname{rank}(A) + \dim(\ker(A)) = k$. Since $\operatorname{rank}(A) = \dim(\operatorname{im}(A))$ and $\operatorname{im}(A) = V$ by construction, this says $\operatorname{rank}(A) = k$ so $\dim(\ker(A)) = 0$, i.e. $\ker(A) = \{\vec{0}\}$. This says the vectors \vec{v}_i are linearly independent, so we are done.

3.4.17 Find the coordinates of $\vec{x} = (1, 1, 1-1)$ with respect to the basis $\beta = \{(1, 0, 2, 0), (0, 1, 3, 0), (0, 0, 4, 1)\}$ of $V = \text{Span}\{(1, 0, 2, 0), (0, 1, 3, 0), (0, 0, 4, 1)\}$.

Solution: Note that $\vec{x} = \vec{v}_1 + \vec{v}_2 - \vec{v}_3$, so that $[\vec{x}]_{\beta} = (1, 1, -1)$.

3.4.29 Find the matrix of T with respect to the basis $\beta = \{(1, 1, 1), (1, 2, 3), (1, 3, 6)\}$ where $T(\vec{x}) = A\vec{x}$ for $A = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -2 & 2 \\ 3 & -9 & 6 \end{pmatrix}$,

Solution: Use the change of basis formula: $A_{\beta} = S_{\mathcal{E}}^{\beta} A S_{\beta}^{\mathcal{E}}$ where \mathcal{E} is the standard basis of \mathbb{R}^3 .	
By definition, $S_{\beta}^{\mathcal{E}} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{pmatrix}$ and $S_{\mathcal{E}}^{\beta} = (S_{\beta}^{\mathcal{E}})^{-1} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{pmatrix}^{-1} = \begin{pmatrix} 3 & -3 \\ -3 & 5 \\ 1 & -2 \end{pmatrix}$	$\begin{pmatrix} 1\\ -2\\ 1 \end{pmatrix}$, so
$A_{\beta} = \begin{pmatrix} 3 & -3 & 1 \\ -3 & 5 & -2 \\ 1 & -2 & 1 \end{pmatrix} \begin{pmatrix} -1 & 1 & 0 \\ 0 & -2 & 2 \\ 3 & -9 & 6 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$	·

3.4.57 Show that if A is the matrix of a reflection around a plane in \mathbb{R}^3 , then A is similar to $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$.

Solution: Let *S* be the plane of reflection. Recall that $A = I_3 - 2P$, where *P* is the matrix of the orthogonal projection onto the line in the direction of a normal vector (which we will call \vec{v}_3) to *S*. Consider the basis $\beta = {\vec{v}_1, \vec{v}_2, \vec{v}_3}$ of \mathbb{R}^3 where \vec{v}_1 and \vec{v}_2 are basis vectors of *S* and \vec{v}_3 is a vector on the line orthogonal to *S* (why is this a basis?). Then in β -coordinates, we have $A_\beta = I_3 - 2P_\beta$. To compute P_β , we see what the projection *P* does to the basis vectors \vec{v}_i . Since \vec{v}_1 and \vec{v}_2 are orthogonal to \vec{v}_3 , $P\vec{v}_1 = P\vec{v}_2 = \vec{0}$, and since \vec{v}_3 is already on the line in the direction of \vec{v}_3 , then $P\vec{v}_3 = \vec{v}_3$. That is, $P_\beta = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Plugging in gives $A_\beta = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$, which then says that *A* is similar to $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$.

3.4.71 Suppose that A is similar to B, i.e. $B = S^{-1}AS$ for some S.

- (a) Show that if $\vec{x} \in \ker(B)$, then $S\vec{x} \in \ker(A)$.
- (b) Prove that $\dim(\ker(A)) = \dim(\ker(B))$.

Solution:

- (a) Suppose $\vec{x} \in \ker(B)$, so $B\vec{x} = \vec{0}$. Then $\vec{0} = (SB)\vec{x} = (AS)\vec{x}$, so $A(S\vec{x}) = \vec{0}$ says $S\vec{x} \in \ker(A)$.
- (b) The same argument shows that if $\vec{x} \in \ker(A)$, that $S^{-1}\vec{x} \in \ker(B)$. Pick a basis $\vec{v}_1, \ldots, \vec{v}_k$ of $\ker(B)$ and a basis $\vec{w}_1, \ldots, \vec{w}_\ell$ of $\ker(A)$. Then since S is invertible, the vectors $S\vec{v}_1, \ldots, S\vec{v}_k$ are linearly independent vectors in $\ker(A)$, i.e. $k \leq \ell$. Reversing the argument says $S^{-1}\vec{w}_1, \ldots, S^{-1}\vec{w}_\ell$ are linearly independent vectors in $\ker(B)$, i.e. $k \geq \ell$ so that $k = \ell$ as desired.

3.37 True or false: if V and W are subspace of \mathbb{R}^n , then $V \cup W$ is a subspace of \mathbb{R}^n .

Solution: False; Consider the two subspaces $V = \text{Span}\{\vec{e_1}\}$ and $W = \text{Span}\{\vec{e_2}\}$. Then $\vec{e_1} \in V \cup W$ and $\vec{e_2} \in W \cup W$ but $\vec{e_1} + \vec{e_2} \notin V \cup W$, so $V \cup W$ is not closed under addition, and therefore not a subspace.

3.39 If $\vec{v}_1, \ldots, \vec{v}_n$ and $\vec{w}_1, \ldots, \vec{w}_n$ are two bases of \mathbb{R}^n , there is a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ such that $T(\vec{v}_i) = \vec{w}_i$.

Solution: True; Set $\beta = \{\vec{v}_1, \dots, \vec{v}_n\}$ and $\gamma = \{\vec{w}_1, \dots, \vec{w}_n\}$. Then the condition $T(\vec{v}_i) = \vec{w}_i$ says that $A_\beta = \begin{pmatrix} \begin{bmatrix} I & & & I \\ [\vec{w}_1]_\beta & \dots & [\vec{w}_n]_\beta \\ I & & I \end{pmatrix}$ where A_β is the matrix of T in β -coordinates (note: this also says that $A_\beta = S_\gamma^\beta$). One can then explicitly find A (in terms of the standard coordinates) using the change of basis formula: $A = S_\beta^{\mathcal{E}} A_\beta S_{\mathcal{E}}^\beta$. More explicitly, $S_\beta^{\mathcal{E}} A_\beta$ is the matrix of the linear transformation T with respect to the bases

 $\beta \text{ and } \mathcal{E} \text{ of } \mathbb{R}^n, \text{ i.e. } S^{\mathcal{E}}_{\beta} A_{\beta} = A^{\mathcal{E}}_{\beta} = \begin{pmatrix} \begin{bmatrix} 1 \\ [T(\vec{v}_1)]_{\mathcal{E}} & \dots & [T(\vec{v}_n)]_{\mathcal{E}} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ \vec{v}_1 & \dots & \vec{v}_n \\ 1 & \dots & 1 \end{pmatrix}, \text{ and } S^{\beta}_{\mathcal{E}} = \begin{pmatrix} S^{\mathcal{E}}_{\beta} B_{\beta} = \begin{pmatrix} 1 & 1 & 1 \\ \vec{v}_1 & \dots & \vec{v}_n \\ 1 & \dots & 1 \end{pmatrix} \end{pmatrix}^{-1}, \text{ so we can explicitly write } A = \begin{pmatrix} 1 & 1 & 1 \\ \vec{v}_1 & \dots & \vec{v}_n \\ 1 & \dots & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ \vec{v}_1 & \dots & \vec{v}_n \\ 1 & \dots & 1 \end{pmatrix}^{-1}.$

Note: this is a very useful (and important!) computation to be able to do. Make sure you understand how to do it!