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2.4.5 Determine if A =

1 2 2
1 3 1
1 1 3

 is invertible, and if so, find its inverse.

Solution: Perform row reduction on A:

1 2 2
1 3 1
1 1 3

→
1 2 2

0 1 −1
0 −1 1

→
1 2 2

0 1 −1
0 0 0

. At

this point we can stop, because we see that A does not have full rank, and therefore is not
invertible.

2.4.77 Let S =

 p p
~v1 . . . ~vm
p p

 be invertible, and suppose T (~vi) = ~wi for some linear transforma-

tion T and vectors ~w1, . . . , ~wm. Set B =

 p p
~w1 . . . ~wm

p p

. Compute the matrix A of T in terms

of B and S.

Solution: Identifying S and B with their corresponding linear transformations, we have that
S(~ei) = ~vi by definition of S, so that (T ◦ S)(~ei) = T (~vi) = ~wi = B(~ei). This says T ◦ S = B
as linear transformations, so as matrices, AS = B. Since S is invertible, we find A = BS−1.

2.49 If A2 + 3A + 4I3 = 0, for a 3× 3 matrix A, then A is invertible.

Solution: This is true: we see A2 +3A = −4I3, so factoring says A(A+3I3) = −4I3. Dividing
then says A(− 1

4A −
3
4I3) = I3. It’s also easy to check that (− 1

4A −
3
4I3)A = I3, so that A is

invertible with A−1 = − 1
4A−

3
4I3.

2.53 Is there a 10× 10 matrix with 92 ones among its entries?

Solution: The answer is no. If A is such a matrix, then there are at least two rows of A
that do not contain any 1’s. This says A has two identical rows, namely a row of all 1’s, and
therefore has a 0 row upon row reduction. This says A does not have full rank, so A is not
invertible.

3.1.11 Find vectors that span the kernel of A =


1 0 2 4
0 1 −3 −1
3 4 −6 8
0 −1 3 4

.
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Solution: The kernel of A is the same as the solution set to A~x = ~0, which we know we

can find by performing row reduction on the augmented matrix


1 0 2 4 0
0 1 −3 −1 0
3 4 −6 8 0
0 −1 3 4 0

. We

do this:


1 0 2 4 0
0 1 −3 −1 0
3 4 −6 8 0
0 −1 3 4 0

 →


1 0 2 4 0
0 1 −3 −1 0
3 4 −6 8 0
0 −1 3 4 0

 →


1 0 2 4 0
0 1 −3 −1 0
0 0 0 3 0
0 0 0 0 0

 →


1 0 2 0 0
0 1 −3 0 0
0 0 0 1 0
0 0 0 0 0

. Reading off the equations, x1 + 2x3 = 0, x2 − 3x3 = 0, x4 = 0 and

x3 is free. This says a vector (x1, x2, x3, x4) in the kernel is of the form (x1, x2, x3, x4) =
(−2x3, 3x3, x3, 0) = x3(−2, 3, 1, 0) for arbitrary x3. Therefore, ker(A) = Span{(−2, 3, 1, 0)}.

3.1.31 Give an example of a matrix A such that im(A) is the plane orthogonal to the vector (1, 3, 2).

Solution: Recall that im(A) is spanned by the columns of A, so we just need a matrix whose
columns span the desired plane, which is given by the equation x + 3y + 2z = 0. Any vector
(x, y, z) such that x + 3y + 2z = 0 satisfies x = −3y − 2z, with y and z free. So (x, y, z) =
(−3y − 2z, y, z) = y(−3, 1, 0) + z(−2, 0, 1) says the vectors (−3, 1, 0) and (−2, 0, 1) span this

plane. Therefore, A =

−3 −2 0
1 0 0
0 1 0

 is such an example.

3.1.33 Give an example of a linear transformations whose kernel is the plane x + 2y + 3z = 0.

Solution: Let ~v = (1, 2, 3), and let A~x = ~v · ~x. Then the kernel of A is the set of vectors such
that ~v · ~x = 0, i.e. with ~x = (x, y, z), all vectors with x + 2y + 3z = 0. The columns of the
matrix A can be determined by computing A~ei, which are given by A~e1 = 1, A~e2 = 2, and
A~e3 = 3 so that A =

(
1 2 3

)
is a matrix with the desired property.

3.2.1 Is W = {(x, y, z) : x + y + z = 1} a subspace of R3?

Solution: No. W is not a subspace of R3 because the zero vector is not an element of W .

3.2.41 Let A be an m× n matrix and B be a n×m matrix such that AB = Im and n 6= m. Are
the columns of B linearly independent? What about the columns of A?

Solution: If B~x = ~0, then ~0 = A~0 = A(B~x) = (AB)~x = Im~x = ~x. This then says the columns
of B are linearly independent. From this, we conclude that rank(B) = m, and in particular,
this tells us that m ≤ n. Since rank(A) ≤ m and rank(A) ≤ n, we deduce that rank(A) < n,
i.e. A does not have full rank so it’s columns are linearly dependent.

3.2.45 Are the columns of an invertible matrtix linearly independent?
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Solution: Yes. Let A =

 p p
~v1 . . . ~vn
p p

 be an invertible n × n matrix. By definition, this

says the only solution to A~x = ~0 is ~x = ~0. Write ~x = (c1, . . . , cn). By definition of matrix
multiplication, A~x = c1~v1 + . . . + cn~vn. This then says that if c1~v1 + . . . + cn~vn = ~0, that all
ci = 0, which is precisely what it means for the columns of A to be linearly independent.

3.2.47 Consider linearly independent vectors ~v1, ~v2, ~v3 in R4. Compute RREF(A) where A = p p p
~v1 ~v2 ~v3
p p p

.

Solution: Since ~vi are linearly independent, the only solution to c1~v1 + c2~v2 + c3~v3 = ~0 is
(c1, c2, c3) = (0, 0, 0). That is to say, the equation A~x = ~0 has only a trivial solution. This says

that A must have full rank, so that RREF(A) =


1 0 0
0 1 0
0 0 1
0 0 0

.

3.3.21 Compute RREF(A), and find a basis of im(A) and ker(A) where A =

1 3 9
4 5 8
7 6 3

.

Solution: First, we do row reduction:

1 3 9
4 5 8
7 6 3

 →
1 3 9

0 −7 −28
0 −15 −60

 →
1 0 −3

0 1 4
0 0 0

.

Two first two columns are the pivot columns of RREF(A), so the first two columns of A span the
image of A. This says im(A) = Span{(1, 4, 7), (3, 5, 6)}. Next, to find the kernel of A, we solve

A~x = ~0, which we can find from the augmented matrix

1 0 −3 0
0 1 4 0
0 0 0 0

. This says x−3z = 0,

y + 4z = 0, and z is free, with ~x = (x, y, z). This says (x, y, z) = (3z,−4z, z) = z(3,−4, 1), so
that ker(A) = Span{(3,−4, 1)}.

3.3.27 Consider the vectors (1, 1, 1, 1), (1,−1, 1,−1), (1, 2, 4, 8), (1,−2, 4,−8) ∈ R4. Do they form
a basis?

Solution: These four vectors form a basis of R4 if they are linearly independent. Saying
they are linearly independent says that the matrix A whose columns are formed by these
vectors is invertible, or equivalently, has full rank. We can check this via row reduction:

1 1 1 1
1 −1 2 −2
1 1 4 4
1 −1 8 −8

 →


1 1 1 1
0 −2 1 −3
0 0 3 3
0 −2 7 −9

 →


1 1 1 1
0 −2 1 −3
0 0 3 3
0 0 6 −6

 →


1 1 1 1
0 −2 1 −3
0 0 3 3
0 0 0 −12

. We

then conclude that A has full rank, so that these vectors form a basis of R4.

3.3.29 Find a basis of the subspace of R3 defined by 2x + 3y + z = 0.
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Solution: Similarly to a previous problem, we can recognize the plane 2x + 3y + z = 0 as the
kernel of the matrix A =

(
2 3 1

)
. By the rank-nullity theorem, dim(ker(A)) + rank(A) = 3.

Since rank(A) = 1, this says dim(ker(A)) = 2. Therefore, any two linearly independent vectors
that lie in the plane must be a basis of the plane. Observe that (1, 0,−2) and (3,−2, 0) are two
such linearly independent vectors, so that a basis is given by {(1, 0,−2), (3,−2, 0)}.

3.3.35 Let ~v ∈ Rn be a non-zero vector. What is the dimension of the space of all vectors in Rn

orthogonal to ~v?

Solution: A vector ~x orthogonal to ~v satsifies ~v · ~x = 0, so we can recognize this space as
the kernel of the linear transformation T (~x) = ~v · ~x. By rank-nullity, we have rank(T ) +
dim(ker(T )) = n. As im(T ) ⊂ R, we have rank(T ) = 0 or rank(T ) = 1. Since ~v 6= ~0, T is not
the zero transformation, i.e. rank(T ) = 1. This says dim(ker(T )) = n− 1.
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