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2.1.5 Consider the linear transformation 7' : R* — R? with 7((1,0,0)) = (7,11), T((0,1,0)) = (6,9)
and 7((0,0,1)) = (—13,17). Find the matrix A of T

Solution: Let é; denote the vector with the i-th component equal to 1 and 0 elsewhere. Recall
that Aeé; returns the i-th column of the matrix A by homework 1. The given information says

Aéi = (7,11), Aés = (6,9) and Aé3 = (—13,17). This then tells us that A = (171 g _1173)

2.1.37 Consider a linear transformation 7' : R? — R2. Suppose that ¥ and @ are two arbitrary
vectors in R? and that # is a third vector whose endpoint is on the line segment connecting the
endpoints of ¥ and @ . Is the endpoint of the vector T'(Z) necessarily on the line segment connecting
the endpoints of T'(v) and T'(w)?

Solution: The answer is yes. Since the endpoint of & lies on the line segment between v and
W, we may write £ = k¥ + (1 — k) for some 0 < k < 1. Then T(¥) = T(kv + (1 — k)W) =
kT (¥) 4+ (1 — k)T (W) because T is a linear transformation. This says the endpoint of T'(Z) lies
on the line segment between T'(¢) and T'(w).

2.2.7 Let L be the line in R? that consists of all scalar multiples of (2, 1,2). Find the reflection of
the vector (1,1,1) around the line L.

Solution: A unit vector in the direction of L is given by @ = (2/3,1/3,2/3). Then the
projection of ¥ = (1,1,1) onto L is given by Proj,(¢) = (¢ - @)u = 5/3(2/3,1/3,2/3) =
(10/9,5/9,10/9). We then have Refr,(¢) = 2Proj; (v) — ¥ = (20/9,10/9,20/9) — (1,1,1) =
(11/9,1/9,11/9).

2.2.31 Find a non-zero 3 x 3 matrix A such that A7 is orthogonal to (1,2,3) for all ¥ € R3.

Solution: Any vector (z,y, z) orthogonal to (1,2, 3) lies in the plane z + 2y 4+ 3z = 0. There-
fore, if we let A be the matrix of the orthogonal projection onto the plane x + 2y + 3z = 0, it
will have the desired property. Recall that the projection onto a plane S is given by Projg (%) =
# — Proj; (%), where i is a normal vector to S. In our case, take 7 = (1/1/14,2/v/14,3//14),
so that Proj;(Z) = (7 - £)ri. To find the matrix of this linear transformation, we just com-
pute the action on the vectors &;,é5,€3. We see that the matrix P of Proj;(Z) is given
1/14 1/7 3/14
by P = | 1/7 2/7 3/7 |, so from Projg(¥) = & — Projz(Z) we find A = [ — P =
3/14 3/7 9/14
13/14 —1/7 —3/14
—1/7 5/7 —=3/7 | is a matrix with the desired property.
-3/14 -3/7 5/14

Alternatively, one can construct a matrix A as follows. The transformation 7'(¥) = AZ is
determined entirely what it does to the vectors €1, €3, €3. This is because any vector & = (z, y, 2)




can be written as (z,y, z) = € + yés + zé3, so by linearity T'(Z) = zT'(€1) + yT'(ez) + 2T (€3).
In particular, if T'(€;) is orthogonal to (1,2,3) for all ¢, this says T'(Z), and therefore AZ, is
orthogonal to (1,2, 3) for all ¢. Since T'(€;) = A€; is just the i-th column of A, any matrix whose
columns are orthogonal to (1,2,3) will work. Notice that the vector (2,—1,0) is orthogonal to
2 2 2
(1,2,3), so the matrix A= [ —1 —1 —1] has the desired property.
0 0 0

2.2.47 Let T(F) = AT be a linear transformation from R? — R2. Define f(t) = T'((cos(t),sin(t)) -
T((—sin(t), cos(t)).

(a) Show that f(t) is continuous.
(b) Show that f(mw/2) = —f(0).

(¢) Deduce that there is some ¢ € [0, 7/2] such that f(c) = 0.

Solution:

orwaea= (2 2) o= (2 ) () (¢ ) (28)
- (gggf((f)) I S:EE:D ' (igsll;l((f)) j—r 22228) = (acos(t) +bsin(t))(—asin(t) +bcos(t)) +
(ccos(t) +dsin(t))(—csin(t) +d cos(t)). Since sums and products of continuous functions

are continuous, this says f(t) is continuous.
(b) We see that f(m/2) = —ab — ¢d and f(0) = ab + cd, so that f(7w/2) = —f(0).

(¢) Since f(0) and f(7/2) have opposite signs, in particular one is positive and one is negative
(or they are both 0). By part a) f is continuous, so by the intermediate value theorem,
there is some ¢ € [0, 7/2] such that f(c) = 0.

Note: the function f(t) is the dot product of (T o R;)(€1) and (T o R;)(€2), where Ry is a
counterclockwise rotation by ¢. As mentioned in the full problem statement, this problem
proves that there are orthogonal unit vectors 1, @ such that T'(;) and T'(#2) are orthogonal.
The idea of the proof is to start with the standard orthogonal unit vectors €; and €5, rotate
them both by some angle ¢ (and by varying ¢ between 0 and 27, this will hit all possible pairs of
orthogonal vectors), and then see if these new vectors are orthogonal after applying T, which
can be done by computing a dot product. This is where the otherwise mysterious function f(t)
is coming from.

2.3.47 Find a 2 x 2 matrix A such that A® = 4 and all entries of A are non-zero.

Solution: We turn to geometry to find an example. If T is a linear transformation corre-
sponding to an orthogonal projection, then applying T twice is the same as just applying T
once; i.e. projecting a projected vector doesn’t give new information. Algebraically, if A is the
matrix of T, this says A? = A, so that A2 = A% = A. Let L be the line in the direction of
your favorite arbitrary vector with non-zero entries. Mine is (3,4). Then @ = (3/5,4/5) is a
unit vector in the direction of L, and the matrix of orthogonal projection onto L is given by

_(9/25 12/25 . .
A= (12 /25 16 /25) which has the desired property.
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