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2.1.5 Consider the linear transformation T : R3 → R2 with T ((1, 0, 0)) = (7, 11), T ((0, 1, 0)) = (6, 9)
and T ((0, 0, 1)) = (−13, 17). Find the matrix A of T .

Solution: Let ~ei denote the vector with the i-th component equal to 1 and 0 elsewhere. Recall
that A~ei returns the i-th column of the matrix A by homework 1. The given information says

A~e1 = (7, 11), A~e2 = (6, 9) and A~e3 = (−13, 17). This then tells us that A =

(
7 6 −13
11 9 17

)
.

2.1.37 Consider a linear transformation T : R2 → R2. Suppose that ~v and ~w are two arbitrary
vectors in R2 and that ~x is a third vector whose endpoint is on the line segment connecting the
endpoints of ~v and ~w . Is the endpoint of the vector T (~x) necessarily on the line segment connecting
the endpoints of T (~v) and T (~w)?

Solution: The answer is yes. Since the endpoint of ~x lies on the line segment between ~v and
~w, we may write ~x = k~v + (1 − k)~w for some 0 ≤ k ≤ 1. Then T (~x) = T (k~v + (1 − k)~w) =
kT (~v) + (1− k)T (~w) because T is a linear transformation. This says the endpoint of T (~x) lies
on the line segment between T (~v) and T (~w).

2.2.7 Let L be the line in R3 that consists of all scalar multiples of (2, 1, 2). Find the reflection of
the vector (1, 1, 1) around the line L.

Solution: A unit vector in the direction of L is given by ~u = (2/3, 1/3, 2/3). Then the
projection of ~v = (1, 1, 1) onto L is given by ProjL(~v) = (~v · ~u)~u = 5/3(2/3, 1/3, 2/3) =
(10/9, 5/9, 10/9). We then have RefL(~v) = 2ProjL(~v) − ~v = (20/9, 10/9, 20/9) − (1, 1, 1) =
(11/9, 1/9, 11/9).

2.2.31 Find a non-zero 3× 3 matrix A such that A~x is orthogonal to (1, 2, 3) for all ~x ∈ R3.

Solution: Any vector (x, y, z) orthogonal to (1, 2, 3) lies in the plane x+ 2y + 3z = 0. There-
fore, if we let A be the matrix of the orthogonal projection onto the plane x+ 2y + 3z = 0, it
will have the desired property. Recall that the projection onto a plane S is given by ProjS(~x) =
~x− Proj~n(~x), where ~n is a normal vector to S. In our case, take ~n = (1/

√
14, 2/

√
14, 3/

√
14),

so that Proj~n(~x) = (~n · ~x)~n. To find the matrix of this linear transformation, we just com-
pute the action on the vectors ~e1, ~e2, ~e3. We see that the matrix P of Proj~n(~x) is given

by P =

1/14 1/7 3/14
1/7 2/7 3/7
3/14 3/7 9/14

, so from ProjS(~x) = ~x − Proj~n(~x) we find A = I − P =13/14 −1/7 −3/14
−1/7 5/7 −3/7
−3/14 −3/7 5/14

 is a matrix with the desired property.

Alternatively, one can construct a matrix A as follows. The transformation T (~x) = A~x is
determined entirely what it does to the vectors ~e1, ~e2, ~e3. This is because any vector ~x = (x, y, z)
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can be written as (x, y, z) = x~e1 + y~e2 + z~e3, so by linearity T (~x) = xT (~e1) + yT (~e2) + zT (~e3).
In particular, if T (~ei) is orthogonal to (1, 2, 3) for all i, this says T (~x), and therefore A~x, is
orthogonal to (1, 2, 3) for all i. Since T (~ei) = A~ei is just the i-th column of A, any matrix whose
columns are orthogonal to (1, 2, 3) will work. Notice that the vector (2,−1, 0) is orthogonal to

(1, 2, 3), so the matrix A =

 2 2 2
−1 −1 −1
0 0 0

 has the desired property.

2.2.47 Let T (~x) = A~x be a linear transformation from R2 → R2. Define f(t) = T ((cos(t), sin(t)) ·
T ((− sin(t), cos(t)).

(a) Show that f(t) is continuous.

(b) Show that f(π/2) = −f(0).

(c) Deduce that there is some c ∈ [0, π/2] such that f(c) = 0.

Solution:

(a) Write A =

(
a b
c d

)
. Then f(t) =

(
a b
c d

)(
cos(t)
sin(t)

)
·
(
a b
c d

)(
− sin(t)
cos(t)

)
=

(
a cos(t) + b sin(t)
c cos(t) + d sin(t)

)
·
(
−a sin(t) + b cos(t)
−c sin(t) + d cos(t)

)
= (a cos(t)+b sin(t))(−a sin(t)+b cos(t))+

(c cos(t) +d sin(t))(−c sin(t) +d cos(t)). Since sums and products of continuous functions
are continuous, this says f(t) is continuous.

(b) We see that f(π/2) = −ab− cd and f(0) = ab+ cd, so that f(π/2) = −f(0).

(c) Since f(0) and f(π/2) have opposite signs, in particular one is positive and one is negative
(or they are both 0). By part a) f is continuous, so by the intermediate value theorem,
there is some c ∈ [0, π/2] such that f(c) = 0.

Note: the function f(t) is the dot product of (T ◦ Rt)(~e1) and (T ◦ Rt)(~e2), where Rt is a
counterclockwise rotation by t. As mentioned in the full problem statement, this problem
proves that there are orthogonal unit vectors ~u1, ~u2 such that T (~u1) and T (~u2) are orthogonal.
The idea of the proof is to start with the standard orthogonal unit vectors ~e1 and ~e2, rotate
them both by some angle t (and by varying t between 0 and 2π, this will hit all possible pairs of
orthogonal vectors), and then see if these new vectors are orthogonal after applying T , which
can be done by computing a dot product. This is where the otherwise mysterious function f(t)
is coming from.

2.3.47 Find a 2× 2 matrix A such that A3 = A and all entries of A are non-zero.

Solution: We turn to geometry to find an example. If T is a linear transformation corre-
sponding to an orthogonal projection, then applying T twice is the same as just applying T
once; i.e. projecting a projected vector doesn’t give new information. Algebraically, if A is the
matrix of T , this says A2 = A, so that A3 = A2 = A. Let L be the line in the direction of
your favorite arbitrary vector with non-zero entries. Mine is (3, 4). Then ~u = (3/5, 4/5) is a
unit vector in the direction of L, and the matrix of orthogonal projection onto L is given by

A =

(
9/25 12/25
12/25 16/25

)
which has the desired property.
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