Selected Solutions to Homwork 1 Tim Smits

1.1.19 Consider the linear system

$$\begin{cases} x + y - z = -2\\ 3x - 5y + 13z = 18\\ x - 2y + 5z = k \end{cases}$$

where k is an arbitrary number.

- (a) For which values of k does the system have one or infinitely many solutions?
- (b) For each value of k you found in part (a), how many solutions does the system have?
- (c) Find all solutions for each value of k.

Solution: (a) Translate the system of equations into the augmented matrix $\begin{pmatrix} 1 & 1 & -1 & | & -2 \\ 3 & -5 & 13 & | & 18 \\ 1 & -2 & 5 & | & k \end{pmatrix}$. Perform elimination: $\begin{pmatrix} 1 & 1 & -1 & | & -2 \\ 3 & -5 & 13 & | & 18 \\ 1 & -2 & 5 & | & k \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 & | & -2 \\ 0 & -8 & 16 & | & 24 \\ 0 & -3 & 6 & | & k+2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 & | & -2 \\ 0 & 1 & -2 & | & -3 \\ 0 & 0 & 0 & | & k-7 \end{pmatrix}$ For the system to be consistent, we require k = 7. (b) When k = 7, the augmented matrix has a row of 0's. This says we have two relevant equations involving 3 variables, so there must be a free variable. This forces there to be infinitely many solutions. (c) When k = 7, we have seen the augmented system reduces to $\begin{pmatrix} 1 & 1 & -1 & | & -2 \\ 0 & 1 & -2 & | & -3 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$. Continuing elimination: $\begin{pmatrix} 1 & 1 & -1 & | & -2 \\ 0 & 1 & -2 & | & -3 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & | & 1 \\ 0 & 1 & -2 & | & -3 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$. Translating back, this says x = 1 - z and y = -3 + 2z. If we set z = t as a free parameter, the solutions are given by (x, y, z) = (1 - t, -3 + 2t, t) = (1, -3, 0) + t(-1, 2, 1).

1.2.18 Determine which of the following matrices are in RREF

(a)	$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	$2 \\ 0 \\ 0 \\ 0 \\ 0$	$egin{array}{c} 0 \\ 1 \\ 1 \\ 0 \end{array}$	$2 \\ 3 \\ 4 \\ 0$	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$
(b)	$\begin{pmatrix} 0\\ 0\\ 0\\ 0 \end{pmatrix}$	$\begin{array}{c} 1 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 2 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$	$\begin{pmatrix} 3\\4\\0 \end{pmatrix}$

(c)
$$\begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$
(d)
$$\begin{pmatrix} 0 & 1 & 2 & 3 & 4 \end{pmatrix}$$

Solution:

(a) No; the third column violates condition 2.

- (b) Yes.
- (c) No; the third column violates condition 3.
- (d) Yes.

1.2.37 Find all vectors in \mathbb{R}^4 perpendicular to the three vectors (1, 1, 1, 1), (1, 2, 3, 4), (1, 9, 9, 7).

Solution: Let (a, b, c, d) an arbitrary vector in \mathbb{R}^4 . Recall that two vectors \vec{x} and \vec{y} are perpendicular if $\vec{x} \cdot \vec{y} = 0$. So we require that $(a, b, c, d) \cdot (1, 1, 1, 1) = 0$, $(a, b, c, d) \cdot (1, 2, 3, 4) = 0$ and $(a, b, c, d) \cdot (1, 9, 9, 7) = 0$. Algebraically, this translate into the system of equations

$$\begin{cases} a+b+c+d = 0\\ a+2b+3c+4d = 0\\ a+9b+9c+7d = 0 \end{cases}$$

which we can then translate into the augmented matrix $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 \end{pmatrix}$. Performing elimi-1 9 9 7 0nation, 0 0 This says a = -d/4 b = 3d/2, and c = -9d/4, where d is a -3/20 0 0 $0 \ 1$ 10 9/4free variable. Setting d = t as a free parameter, the solution set is given by (a, b, c, d) =t(-1/4, 3/2, 9/4, 1), which we recognize as a line in \mathbb{R}^4 .

1.3.23 Consider a linear system of 4 equations with 3 variables. Suppose this system has a unique solution. What does the RREF of the coefficient matrix A look like?

Solution: A is a 4×3 matrix, and recall that #free variables = $m - \operatorname{rank}(A)$. If the system has a unique solution, we have no free variables, i.e. $\operatorname{rank}(A) = 3$. This then says $\operatorname{RREF}(A) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

1.3.47 A linear system of the form $A\vec{x} = \vec{0}$ is called *homogeneous*. Prove the following:

- (a) All homogeneous systems are consistent.
- (b) A homogeneous system with fewer equations than unknowns has infinitely many solutions.
- (c) If $\vec{x_1}$ and $\vec{x_2}$ are solutions to $A\vec{x} = \vec{0}$, then $\vec{x_1} + \vec{x_2}$ is also a solution.
- (d) If $A\vec{x} = \vec{0}$ and k is an arbitrary constant, $k\vec{x}$ is a solution to $A\vec{x} = \vec{0}$.

Solution:

- (a) It's not possible to get a row of the form $\begin{pmatrix} 0 & 0 & \dots & 0 \\ \end{pmatrix}$ where the last entry is non-zero in the augmented matrix, so the system is consistent.
- (b) If we have n equations with m variables with n < m, then A is an $n \times m$ matrix. From $\operatorname{rank}(A) \leq n$ and $\operatorname{rank}(A) \leq m$, in particular this says $\operatorname{rank}(A) < m$, so #free variables = $m \operatorname{rank}(A) > 0$ forces there to be infinitely many solutions.
- (c) We have $A(\vec{x_1} + \vec{x_2}) = A\vec{x_1} + A\vec{x_2} = \vec{0} + \vec{0} = \vec{0}$ by properties of matrices.
- (d) We have $A(k\vec{x}) = k(A\vec{x}) = k\vec{0} = \vec{0}$ by properties of matrices.

1.3.59 For which values of c and d is the vector (5, 7, c, d) a linear combination of (1, 1, 1, 1) and (1, 2, 3, 4)?

