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8.1.5. Orthogonally diagonalize A =

0 1 1
1 0 1
1 1 0

.

Solution: We have pA = −(λ − 2)(λ + 1)2, so A has eigenvalues 2 and −1. Bases of the
eigenspaces are given by E2 = Span{(1, 1, 1)} and E−1 = Span{(−1, 0, 1), (−1, 1, 0)}. Run-
ning Gram Schmidt gives orthonormal bases of E2 = Span{(1/

√
3, 1/
√

3, 1/
√

3)} and E−1 =

Span{(−1/
√

2, 0, 1/
√

2), (−1/
√

6,
√

2/3,−1/
√

6)}. This gives S =

1/
√

3 −1/
√

2 −1/
√

6

1/
√

3 0
√

2/3

1/
√

3 1/
√

2 −1/
√

6


and D =

2 0 0
0 −1 0
0 0 −1

, and A = SDSt.

8.1.23. Let A be a symmetric n× n orthogonal matrix. What can you say about the eigenvalues
of A? Interpret T (x) = Ax geometrically when n = 2 and n = 3.

Solution: Since A is symmetric, A = At and since A is orthogonal, A−1 = At, so this says
A = A−1, i.e. A2 = I. If λ is an eigenvalue of A, we must therefore have λ2 = 1 so λ = ±1. Since
A is orthogonally diagonalizable, without loss of generality choose an orthonormal eigenbasis
β = {v1, . . . , vn} such that v1, . . . , vk are associated to λ = 1 and vk+1, . . . , vn are associated
to λ = −1. Then Aβ is a diagonal matrix with k 1’s and n − k −1’s, i.e. A represents a
reflection around the subspace spanned by the vectors vk+1, . . . , vn. Concretely for n = 2, A
is a reflection around some line (the eigenvector associated to λ = 1), and for n = 3, A is a
reflection around either a line (if there is only 1 eigenvector associated to 1), or a plane (if there
are two).

8.2.5. Determine the definiteness of the quadratic form q(x, y) = x2 + 4xy + y2.

Solution: The matrix associate to q is given by A =

(
1 2
2 1

)
, which has eigenvalues 3 and

−1. This then says that q is indefinite.

8.2.9. Let A be a skew-symmetric n× n matrix, i.e. At = −A.

(a) If A is skew-symmetric, is A2 symmetric or skew-symmetric?

(b) What can you say about the definiteness of A2? The eigenvalues?

(c) What can you say about the complex eigenvalues of A? Which such matrices A are diagonal-
izable over R?
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Solution:

(a) A2 = −AAt, so (A2)t = −AAt = A2 says A2 is symmetric.

(b) xtA2x = −xtAAtx = −‖Ax‖2 ≤ 0, so A2 is negative semi-definite, so that all it’s
eigenvalues are negative.

(c) Eigenvalues of A are just the square roots of the eigenvalues of A2. Since A2 has non-
positive eigenvalues, A has purely imaginary eigenvalues (or just 0). The only way that
A can then be diagonalizable is if all eigenvalues are 0, i.e. A is the 0 matrix.

8.2.27. Consider a quadratic form q(x) = xtAx, for A an n×n symmetric matrix with eigenvalues
λ1 ≥ . . . ≥ λn. Determine the image of Sn−1 under q.

Solution: Let β = {v1, . . . , vn} be the corresponding orthonormal eigenbasis for A. In β-
coordinates, we have q(c1, . . . , cn) = λ1c

2
1 + . . .+λnc

2
n. Vectors in Sn−1 satisfy c21 + . . .+c2n = 1,

so from this constraint we see that the maximal and minimal values that q can take are λ1 and
λn respectively. Since q is continuous, the image of Sn−1 under q is an interval in R, and this
interval is then therefore [λn, λ1].

8.3.11. Compute the SVD of A =

1 0
0 2
0 0

.

Solution: AtA =

(
1 0
0 4

)
has eigenvalues λ1 = 4 and λ2 = 1, so A has singular values σ1 = 2

and σ2 = 1, which says Σ =

2 0
0 1
0 0

. Orthonormal bases of the eigenspaces of AtA are given

by E4 = Span{(0, 1)} and E1 = Span{(1, 0)}, so V =

(
0 1
1 0

)
= V t. We have u1 = 1

σ1
Av1 and

u2 = 1
σ2
Av2, so u1 = (0, 1, 0) and u2 = (1, 0, 0). We clearly see u3 = (0, 0, 1) makes {u1, u2, u3}

an orthonormal basis, so we get U =

0 1 0
1 0 0
0 0 1

.

Note: A is “almost” a Σ matrix – you just need to swap the entries 1 and 2. You can do this
by swapping the columns of A, and then swapping the first two rows of A. The first operation
is given by the matrix V , and the second by the matrix U . If you know how to write down
permutation matrices, you could do the computation extremely quickly!

8.3.17. Let A be an n ×m matrix with rank(A) = m and SVD A = UΣV t. Show that the least
squares solution to Ax = b is given by x∗ = b·u1

σ1
v1 + . . .+ b·um

σm
vm.

Solution: The least squares solution is given by solving the normal equation AtAx∗ = Atb.
With A = UΣV t, we have AtA = (V ΣtU t)(UΣV t). Since U is orthogonal, U tU = I, and one
can check that ΣtΣ = D, the matrix of eigenvalues of AtA. This says AtA = V DV t. So we wish
to solve V DV tx∗ = V ΣtU tb. Since rank(A) = m, AtA is invertible, so 0 is not an eigenvalue and
therefore D is invertible. This gives x∗ = (V DV t)−1ΣtU tb = V D−1V tV ΣtU tb = V D−1ΣtU tb.
Writing down V in terms of columns, D−1 as a diagonal matrix, and Σt, U t in terms of rows,
doing out the matrix multiplication you’ll find x∗ = b·u1

σ1
v1 + . . .+ b·um

σm
vm as desired.
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8.3.23. Let A be an n×m matrix with SVD A = UΣV t. Show the columns of U are an orthonormal
eigenbasis for AAt. What are the eigenvalues? How does this relate the eigenvalues of AAt and
AtA?

Solution: We have AAt = (UΣV t)(V ΣtU t) = UDU t, because V tV = I from V being orthog-
onal, and ΣΣt = D is a diagonal matrix whose first r entries are the non-zero singular values
squared and 0’s elsewhere. We then have AAtui = UDU tui = UDei = U(σ2

i ei) = σ2
iUei =

σ2
i ui, so ui is an eigenvector of eigenvalue σ2

i = λi. This says the vectors ui form an orthonor-
mal eigenbasis of AAt. Since λi are the eigenvalues of AtA, we have that AAt and AtA have
the same eigenvalues.

8.3.27. Let λ be a real eigenvalue of an n× n matrix A. Show that σn ≤ |λ| ≤ σ1.

Solution: Let β = {v1, . . . , vn} be an orthonormal eigenbasis for AtA,and let {u1, . . . , un} be
the corresponding basis of Rn whose columns form the matrix U as in the SVD of A. For
any unit vector x ∈ Rn, write x = c1v1 + . . . + cnvn, so that Ax = c1Av1 + . . . + cnAvn =
c1Av1 + . . . + crAvr, where v1, . . . , vr correspond the r non-zero singular values of A. We
then have Ax = c1σ1u1 + . . . + crσrur, so ‖Ax‖2 = σ2

1c
2
1 + . . . + σ2

rλ
2
r = λ1c

2
1 + . . . + λrc

2
r,

where λi are the eigenvalues of AtA. Since x is a unit vector, we have c21 + . . . + c2n = 1, so
‖Ax‖2 ≤ λ1(c21 + . . . + c2r) = λ1 and ‖Ax‖2 ≥ λn(c21 + . . . + c2r) = λn by how the eigenvalues
are ordered in SVD. This then says σn ≤ ‖Ax‖ ≤ σ1 for any unit vector x ∈ Rn. If v is
a unit eigenvector of A of eigenvalue λ, plugging v into the above then immediately gives
σn ≤ |λ| ≤ σ1.

8.3.31. Show that any n×m matrix A of rank r can be written as a sum of r rank 1 matrices.

Solution: Let A = UΣV t be a SVD of A. By how matrix multiplication works, if σ1, . . . , σr are
the non-zero singular values of A, we have A = σ1u1v

t
1 + . . .+σrurv

t
r. Since im(uiv

t
i) ⊂ im(ui),

and rank(ui) = 1 (it’s just a vector!), this forces rank(uiv
t
i) = 1.
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