
Orthogonality
Tim Smits

We’ve seen how to work with linear transformations in different coordinate systems, and have
seen how some problems that are hard in the standard coordinate system become easy in “nice”
coordinate systems. The goal of the rest of the course is to find “nice” coordinate systems that
make doing linear algebra in them easier. The first such type of coordinate system is related to
orthogonality, which will be a coordinate system that makes geometric problems easy to handle.

Definitions and examples

Definition 1. We say vectors ~v, ~w ∈ Rn are called orthogonal if ~v · ~w = 0. A set of vectors
S = {~v1, . . . , ~vk} is called orthogonal if ~vi · ~vj = 0 for i 6= j, i.e. all vectors are orthogonal to each
other. A set of vectors S = {~v1, . . . , ~vk} is called orthonormal if S is orthogonal and all ~vi are
unit vectors, i.e. ‖~vi‖ = 1 for all i.

Example 2. The set S =

{
1
1
1
1

 ,

1
−1
1
−1

 ,

−1
1
1
−1

} is an orthogonal subset of R4. The set S =

{
1/2
1/2
1/2
1/2

 ,

1/2
−1/2
1/2
−1/2

 ,

−1/2
1/2
1/2
−1/2

} is an orthonormal subset of R4. The set S =

{
1/2
1/2
1/2
1/2

 ,

1
0
0
0

 ,

−1/
√

2
0

1/
√

2
0

}
is neither orthogonal or orthonormal (but all vectors are unit vectors).

The reason why we care about orthogonal/orthonormal subsets is because they make two important
computations in linear algebra very easy: if β is an orthonormal basis of Rn (i.e. a basis of Rn
that’s orthonormal) computing the β-coordinates [~x]β of some vector ~x ∈ Rn becomes very simple.
Additionally, a set of orthogonal/orthonormal vectors is automatically linearly independent.

Theorem 3. Let S = {~u1, . . . , ~uk} be an orthonormal subset of Rn.

1. S is linearly independent

2. If ~v ∈ Span(S), then ~x = (~x · ~u1)~u1 + . . .+ (~x · ~uk)uk

Proof. 1. Suppose that c1~u1 + . . . + ck~uk = ~0 for some ci ∈ R. Since the ~ui are orthogonal, we
can recover the coefficient ci by dotting both sides with ~ui: ~x · ~ui = (c1~u1 + . . .+ ck~uk) · ~ui =
ci(~ui · ~ui) = ci = 0, where ~ui · ~ui = 1 because ~ui are unit vectors. This then says all ci = 0,
so the vectors are linearly independent.

2. If ~x ∈ Span(S), we can write ~x = c1~u1 + . . .+ ck~uk for some coefficients ci. To determine the
values ci, we do the same thing as above: dotting both sides with ~ui, ~x · ~ui = (c1~u1 + . . . +
ck~uk) · ~ui = ci(~ui · ~ui) = ci. This proves what we want.

One important rephrasing of the second statement is the following:

1

Theorem 4. Let β = {~u1, . . . , ~un} be an orthonormal basis of Rn. For ~x ∈ Rn, we have [~x]β =~x · ~u1...
~x · ~un

Orthogonal Projections

We saw earlier how to construct the orthogonal projection of of a vector ~x ∈ R2 onto a line L, as
well as how to project a vector ~x onto either a line L or a plane S in R3. We now give a general
construction for how to project a vector ~x onto a k-dimensional subspace of Rn.

Definition 5. Let S be a k-dimensional subspace of Rn. The orthogonal complement of S, S⊥,
is defined to be the set of vectors in Rn that are orthogonal to every vector in S.

Example 6. If S is a line in R3, then S⊥ is the plane orthogonal to that line.

The set S⊥ has the following properties: (of which we will only need the last for now)

Theorem 7. Let S ⊂ Rn be a k-dimensional subspace.

1. S⊥ is a subspace of Rn.

2. dim(S⊥) = n− k

3. (S⊥)⊥ = S

4. Rn = S⊕S⊥, i.e. every vector ~x ∈ Rn is of the form ~x = ~xS+~x⊥ where ~xS ∈ S and ~x⊥ ∈ S⊥.

Definition 8. The vector ~xS (sometimes denoted ProjS(~x)) in the above theorem is called the
orthogonal projection of ~x onto S.

We can compute ~xS as follows. Suppose we have an orthonormal basis {~u1, . . . , ~uk} of S. Then
we can write ~x = ~xS + ~x⊥, and since ~xS ∈ S, we can write ~xS = c1~u1 + . . . + ck~uk. So ~x =
c1~u1 + . . . + ck~uk + ~x⊥. Since ~x⊥ ∈ S⊥, it’s orthogonal to all vectors in S, and in particular, the
vectors ~ui. So dotting both sides with ~ui says ~x ·~ui = (c1~u1 + . . .+ ck~uk +~x⊥) ·~ui = ci(~ui ·~ui) = ci.
This gives us the following formula:

Theorem 9. Let S ⊂ Rn be a k-dimensional subspace with orthonormal basis {~u1, . . . , ~uk}. Then
ProjS(~x) = (~x · ~u1)~u1 + . . .+ (~x · ~uk)~uk.

Example 10. Let S = Span

{
1
7
1
7

 ,

−1
0
1
0

 ,

0
1
0
−1

}. Let’s compute ProjS(~x) for arbitrary ~x ∈

R4. Notice that S is spanned by an orthogonal set, but not an orthonormal set. To make it orthonor-

mal, we just need to normalize the vectors. Then β =

{
1/10
7/10
1/10
7/10

 ,

−1/
√

2
0

1/
√

2
0

 ,

0

1/
√

2
0

−1/
√

2

} =

{~u1, ~u2, ~u3} is an orthonormal basis for S. To compute ProjS(~x), we first find the matrix of
the orthogonal projection. We see that ProjS(~e1) = (~e1 · ~u1)~u1 + (~e1 · ~u2)~u2 + (~e1 · ~u3)~u3 =

1

10
~u1 −

1√
2
~u2 + 0~u3 =

51/100
7/100
−49/100

7/100

. Similarly, we compute ProjS(~e2) =
7

10
~u1 + 0~u2 +

1√
2
~u3 =

7/100
99/100
7/100
−1/100

, ProjS(~e3) =
1

10
~u1 +

1√
2
~u2 + 0~u3 =

−49/100

7/100
51/100
7/100

, and ProjS(~e4) =
7

10
~u1 + 0~u2 −

2

1√
2
~u3 =

7/100
−1/100
7/100
99/100

. If we let P be the matrix of the projection, what we have just done says

P =

51/100 7/100 −49/100 7/100
7/100 99/100 7/100 −1/100
−49/100 7/100 51/100 7/100

7/100 −1/100 7/100 99/100

, and so we can compute ProjS(~x) by computing

P~x.

The above computation was kind of awful. What is a more efficient way of computing P? One way is
the following. We can extend the orthonormal basis {~u1, ~u2, ~u3} of S to an orthonormal basis of R4,
β = {~u1, ~u2, ~u3, ~u4} by choosing ~u4 = (~x−ProjS(~x))/‖~x−ProjS(~x)‖ for any vector ~x ∈ R4 (because
~x− ProjS(~x) ∈ S⊥, so after normalizing we have a set of 4 orthonormal vectors which forces it to
be a basis!), although the vector ~u4 will end up being irrelevant. The matrix of P in β-coordinates,

Pβ , is given by Pβ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

. If E is the standard basis of R4, the change of basis matrix

SEβ is simply the matrix

 p p p p
~u1 ~u2 ~u3 ~u4
p p p p

, and we have SβE = (SEβ)−1 = (SEβ)t =

− ~u1 −
− ~u2 −
− ~u3 −
− ~u4 −

.

The change of basis formula then says that P = SEβPβS
β
E = ~u1~u

t
1 + ~u2~u

t
2 + ~u3~u

t
3 (verify this is how

the matrix multiplication works out if this is not clear!). In general, we get the following:

Theorem 11. Let S be a k-dimensional subspace of Rn with orthonormal basis {~u1, . . . , ~uk}. The
the matrix of the orthogonal projection ProjS is given by P = ~u1~u

t
1 + . . .+ ~uk~u

t
k.

As an application of projections, we give the following geometric example:

Example 12. What is the minimal distance from a point ~x ∈ R3 to the plane S : x+2y+z = 0? It
is hopefully pretty clear geometrically that the shortest path to the plane is obtained by travelling
along the line through ~x that’s orthogonal to the plane, i.e, the minimal distance is given by ‖~x⊥‖ =

‖~x − ProjS(~x)‖. It turns out an orthonormal basis of S is given by

{−2/
√

5

1/
√

5
0

 ,

 1/
√

30

2/
√

30

−5/
√

30

}.

The above theorem says that the matrix P of the projection is given by

 5/6 −1/3 −1/6
−1/3 1/3 −1/3
−1/6 −1/3 5/6

.

If we write ~x =

ab
c

, it turns out that ‖~x− ProjS(~x)‖ = ‖(I3 − P)~x‖ =
|a+ 2b+ c|

√
6

6
(if you do

out the computation).

Finding orthonormal bases: the Gram-Schmidt algorithm

Hopefully the above section illustrates why we would want to work with an orthonormal basis of
some subspace S of Rn. How can we find one? The answer lies in the following algorithm:

Theorem 13 (Gram-Schmidt Process). Let S ⊂ Rn be a k-dimensional subspace with basis
{~v1, . . . , ~vk}. Then the set {~u1, . . . , ~uk} is an orthonormal basis of S, where ~ui is defined by the

3

following:

~u1 = ~v1/‖~v1‖

~u2 = ~v2
⊥/‖~v2⊥‖, where ~v⊥2 = ~v2 − (~v2 · ~u1)~u1

...

~uk = ~v⊥k /‖~v⊥k ‖, where ~v⊥k = ~vk − (~vk · ~u1)~u1 − . . .− (~vk · ~uk−1)~uk−1

and in general, ~ui = ~v⊥i /‖~v⊥i ‖ where ~v⊥i = ~vi − (~vi · ~u1)~u1 − . . .− (~vi · ~ui−1)~ui−1

Example 14. Let L = Span

{
1
1
1
1

} = Span{~v} be a line in R4. Then L⊥ is a 3-dimensional

subspace of R4. What’s an orthonormal basis of L⊥? To compute this, we first find a basis of L⊥

and then run Gram-Schmidt. Any vector ~x =

a
b
c
d

 ∈ L⊥ must satisfy the equation ~x · ~v = 0, i.e.

a + b + c + d = 0. Solving the system says a = −b− c− d with b, c, d free, so we find that a basis

of L⊥ is given by β =

{
−1
1
0
0

 ,

−1
0
1
0

 ,

−1
0
0
1

} = {~v1, ~v2, ~v3}. We now run Gram-Schmidt. We

have ~u1 = ~v1/‖~v1‖ =

−1/
√

2

1/
√

2
0
0

. Then ~v⊥2 = ~v2 − (~v2 · ~u1)~u1 = ~v2 +
1√
2
~u1 =

−1/2
−1/2

1
0

, so that

~u2 = ~v⊥2 /‖~v⊥2 ‖ =
2√
6
~v⊥2 =

−1/
√

6

−1/
√

6

2/
√

6
0

. Finally, we have ~v⊥3 = ~v3 − (~v3 · ~u1)~u1 − (~v3 · ~u2)~u2 − (~v3 ·

~u3)~u3 = ~v3 −
1√
2
~u1 −

1√
6
~u3 =

−1/3
−1/3
−1/3

1

, so that ~u3 = ~v⊥3 /‖~v⊥3 ‖ =

−
√

3/6

−
√

3/6

−
√

3/6√
3/2

. This says that

β =

{
−1/
√

2

1/
√

2
0
0

 ,

−1/
√

6

−1/
√

6

2/
√

6
0

 ,

−
√

3/6

−
√

3/6

−
√

3/6√
3/2

} is an orthonormal basis of L⊥.

4

