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The Spectral Theorem

In chapter 7 we answered the question of when an n× n matrix A is diagonalizable, i.e. when Rn
has an eigenbasis consisting of eigenvectors of A. Is it possible to find an orthonormal eigenbasis
of Rn using eigenvectors of A? In some sense, this is the “best” general case basis you can hope
for to understand a linear transformation: an orthonormal basis lets you very easily compute the
coordinates of some vector x with respect to the eigenbasis, and working in an eigenbasis lets you
easily determine the image of said vector x under A.
Unfortunately, it’s not always (indeed, there’s no reason to even expect it should be possible at
all!). However, the (perhaps shocking) condition is the following:

Theorem 1 (Real Spectral Theorem). Let A be an n × n matrix with real entries. A has an
orthonormal basis of eigenvectors if and only if A is symmetric, i.e. A = At.

The key to the Spectral Theorem lies in the following facts:

Proposition 2. Let A be a symmetric n × n matrix with distinct eigenvalues λ1 and λ2, with
associated eigenvectors v1 and v2. Then v1 · v2 = 0.

Proof. λ2(v1 ·v2) = v1 ·Av2 = vt2A
tv1 = vt2Av1 = λ1(v1 ·v2). Since λ1 6= λ2, this forces v1 ·v2 = 0.

Proposition 3. Let A be a symmetric n×n matrix with real entries. Then A has n real eigenvalues
counted with multiplicity.

Proof. Let v be an eigenvector of A with eigenvalue λ. From Av = λv, taking complex conjugates
says Av̄ = λ̄v̄ (note A = Ā because A has real entries!). We then have Av · v̄ = v̄tAv = λ(v · v̄). On
the other hand, v ·Av̄ = λ̄(v ·v̄), and since A is symmetric, Av ·v̄ = v ·Av̄. This says λ(v ·v̄) = λ̄(v ·v̄).
The quantity v · v̄ is non-negative, and in particular is 0 if and only if v = 0. This then says λ = λ̄
so λ is real. This says every eigenvalue of A must be real, so the characteristic polynomial of A has
n real roots, i.e. A has n eigenvalues with multiplicity.

Both of these facts are absolutely essential if there is any hope of finding an orthonormal eigenbasis,
as the following shows:

Example 4. Let A =

 0 0 −2
−1 2 −1
1 0 3

. One can check that A is diagonalizable with eigenvalues

1, 2 and bases of the eigenspaces E1 and E2 are given by {(2, 1,−1)} and {(0, 1, 0), (−1,−1, 1)}
respectively. The matrix A is not symmetric, so the Spectral Theorem says that A is not orthogo-
nally diagonalizable. What goes wrong? An orthogonal basis of E2 is given by {(0, 1, 0), (1, 0,−1)}.
However, (2, 1,−1) · (0, 1, 0) = 1 6= 0. Since any eigenvector v ∈ E2 is of the form (c2, c1,−c2)
for c1, c2 ∈ R, we see that (2, 1,−1) · (c2, c1,−c2) = 2c1 + 2c2 is 0 only when c2 = −c1, i.e. the
eigenvector is of the form (−c1, c1, c1). Therefore it’s impossible to find two linearly independent
eigenvectors orthogonal to (2, 1,−1).

The issue of course, is that just because you have an eigenbasis of Rn, running Gram-Schmit to turn
it into an orthonormal basis of Rn doesn’t mean that the vectors the algorithm spits out remain
eigenvectors (in fact, they usually are not – try it!). However, performing Gram-Schmit inside
some eigenspace Eλ does preserve these vectors being eigenvectors (by definition, an orthonormal
basis of Eλ has to consist of vectors of Eλ, which are eigenvectors!). This is where the symmetric
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condition comes in: the eigenspaces of a symmetric matrix are orthogonal to each other, so you can
find orthonormal bases of each eigenspace and concatenate them to get an orthonormal basis of Rn
where all vectors are eigenvectors.

We illustrate the orthogonal diagonalization algorithm in the following example:

Example 5. Let A =

1 1 1
1 1 1
1 1 1

. Then A is symmetric, so A is orthogonally diagonalizable by

the Spectral Theorem. A has rank 1, so dim(ker(A)) = 2. In particular, A is not invertible, so
A has 0 as an eigenvalue, and dim(E0) = dim(ker(A)) = 2. Vectors (x, y, z) in the kernel satisfy
x+ y + z = 0, i.e. ker(A) = Span{(−1, 1, 0), (−1, 0, 1)}. A has 3 eigenvalues with multiplicity, and
we know 2 of them are 0. Since Tr(A) is the sum of the eigenvalues of A, this says the remaining
eigenvalue must be 3. (here is why trace is useful!) We then see that E3 = Span{(1, 1, 1)}. Alter-
natively, one could compute pA(λ) = 3λ2−λ3 and find the eigenvalues this way, but the above sort
of argument shows you the types of computational tricks that you can sometimes use to make life
easier.

We now run Gram-Schmidt on each eigenspace: after doing so, we find an orthonormal basis
of E0 is given by {(−1/

√
2, 1/
√

2, 0), (−1/
√

6, 1/
√

6, 2/
√

6)} and an orthonormal basis of E3 is

given by {(1/
√

3, 1/
√

3, 1/
√

3)}. The change of basis matrix from the orthonormal eigenbasis β =

{(−1/
√

2, 1/
√

2, 0), (−1/
√

6, 1/
√

6, 2/
√

6), (1/
√

3, 1/
√

3, 1/
√

3)} to the standard basis E is given by

SEβ =

−1
√

2 −1
√

6 1/
√

3

1/
√

2 1/
√

6 1/
√

3

0 2/
√

6 1/
√

3

. Since β is an orthonormal basis, SEβ is orthogonal, so SβE =

(SEβ )−1 = (SEβ )t. We then have

A = SEβAβ(SEβ )t =

−1
√

2 −1
√

6 1/
√

3

1/
√

2 1/
√

6 1/
√

3

0 2/
√

6 1/
√

3

0 0 0
0 0 0
0 0 3

 −1
√

2 1/
√

2 0

−1/
√

6 1/
√

6 2/
√

6

1/
√

3 1/
√

3 1/
√
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.

Application 1: Quadratic forms

Definition 6. A quadratic form q(x1, . . . , xn) : Rn → R is a polynomial where all terms have
degree 2. If A = [aij ] is an n × n symmetric matrix, the quadratic form associated to A is the

function defined by qA(x) = xtAx =

n∑
i=1

n∑
j=1

aijxixj .

Given a quadratic form q, from the coefficients you can read off the symmetric matrix associated

to it: if q =

n∑
i=1

n∑
j=1

cijxixj , define a symmetric matrix A by Aij = Aji =
1

2
cij and Aii = cii for all

i, j. It’s then easy to see that xtAx = q(x) for all x ∈ Rn.

Example 7. The function q(x, y) = x2 − xy + y2 is a quadratic form. The matrix associated to q

is given by A =

(
1 −1/2
−1/2 1

)
.

Since the matrix A is symmetric, the Spectral Theorem says it’s orthogonally diagonalizable. Let
β = {v1, . . . , vn} be an orthonormal eigenbasis of Rn consisting of eigenvectors of A. Denote the
eigenvalues by λ1, . . . , λn. For a vector x ∈ Rn, suppose that the β-coordinates of x are given
by [x]β = (c1, . . . , cn). If we work entirely in β-coordinates, we have [q(x)]β = [x]tβD[x]β , where
D = Aβ is the diagonal matrix of eigenvalues of A. Expanding this out (and writing q as a function
of coordinates), we find q(c1, . . . , cn) = λ1c

2
1 + . . .+ λnc

2
n.
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Quadratic forms often arise in various applications (economics, calculus, physics, statistics, number
theory, etc). In many applications, one is interested in optimization problems involving quadratic
forms. If you’ve taken math 32A, the following type of problem probably looks familiar:

Example 8. Consider f(x, y) = x2 + 4xy+y2. What is the minimal value of f with the constraint
x2 + y2 = 1? If you’ve taken multivariable calculus, this is a standard exercise in Langrange
multipliers. However, since f is a quadratic form, we can use linear algebra. The matrix associated

to f is given by A =

(
1 2
2 1

)
, and has eigenvalues λ1 = 3 and λ2 = −1. If β = {v1, v2} is an

orthonormal eigenbasis for R2 of eigenvectors of A, using the above result says in β-coordinates
that f(c1, c2) = 3c21 − c22, where the constraint is c21 + c22 = 1. We then clearly see that f(c1, c2) =
3c21 − c22 ≥ −c22. The minimal value is obviously attained at the point (0, 1) in the β-coordinate
system. With respect to the standard basis, this says v2 is a minimizer of f(x, y). One can then

check that v2 = (−1/
√

2, 1/
√

2).

Definition 9. An n× n symmetric matrix A is called positive semi-definite (denoted A ≥ 0) if
xtAx ≥ 0 for all x ∈ Rn. Similarly, A is negative semi-definite (denoted A ≤ 0) if xtAx ≤ 0 for
all x ∈ Rn. A is indefinite if it’s neither positive semi-definite or negative semi-definite. Positive
definiteness and negative definiteness are defined how you think they should be.

Another way of phrasing the above is that the quadratic form qA(x) only takes on non-negative or
non-positive values. If β = {v1, . . . , vn} is an orthonormal eigenbasis, working in β coordinates, we
saw that we can write qA as a function of the β-coordinates by qA(c1, . . . , cn) = λ1c

2
1 + . . .+ λnc

2
n.

The following is then immediately obvious:

Proposition 10. A symmetric n × n matrix A is positive (negative) semi-definite if and only if
λi ≥ 0 (≤ 0) for all eigenvalues λi of A.

The following is a test for positive definiteness:

Theorem 11 (Sylvester’s criterion). An n× n symmetric matrix A is positive definite if and only
if det(A(m)) > 0 for all m, where A(m) is the m ×m submatrix of A starting from the upper left
corner.

Note that A is negative definite if and only if −A is positive definite, so you can also use Sylvester’s
criterion to test for negative definiteness.

Example 12. Let A =

1 2 3
4 5 6
7 8 9

. We have A(1) = (1), so det(A(1)) = 1 > 0. We have

A(2) =

(
1 2
4 5

)
, and det(A(2)) < 0. Finally, A(3) = A, and det(A) = 0, so the matrix A is not

positive definite (which was already known from A not being invertible).

Example 13. (If you’ve taken math 32A) Note that a quadratic form associated to an n×n matrix
defines a 2-dimensional surface in Rn+1, e.g. f(x, y) = x2 + 4xy + y2 defines a paraboloid in R3.
The geometry of the associated quadratic form can be classified based on whether the quadratic
form is positive semi-definite, negative semi-definite, or indefinite, resulting in an upward facing
paraboloid, downward facing paraboloid, or saddle surface respectively. Consider a differentiable
function f : R2 → R. Recall that f attains a local maximum or minimum at a critical point, i.e. a
point P = (a, b) where ∇f(a, b) = (0, 0). You may also recall the second derivative test: if you look
at the expression D(a, b) = fxx(a, b)fyy(a, b)−(fxy(a, b))2, then P is a local minimum if D(a, b) > 0
and fxx(a, b) > 0, and P is a local maximum if D(a, b) > 0 and fxx(a, b) < 0. If D(a, b) < 0 then
P is called a saddle point. This is, of course, a higher dimensional generalization of the second
derivative test you learn in single variable calculus: if f ′(x0) = 0 and f ′′(x0) > 0, then x0 is a local
minimum, and if f ′(x0) = 0 and f ′′(x0) < 0 then x0 is a local maximum.
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The Hessian matrix of f is the matrix H(a, b) =

(
fxx(a, b) fxy(a, b)
fyx(a, b) fyy(a, b)

)
. Notice that D(a, b) =

det(H(a, b)). Using the Hessian matrix, we see that the second partial derivative test is nothing
other than using Sylvester’s criterion to test whether H is positive or negative definite, and P
being a saddle says that H is indefinite. Without going into technical details, a multivariable
version of a Taylor series tells you that near the point (a, b), f(x, y) “looks like” the quadratic form
defined by H(a, b). The corresponding geometry of the surface then tells you the behavior of f .
As a consequence, this view point makes it much easier to imagine how the second derivative test
generalizes to higher dimensions (something you would not have seen in 32A!).

Application 2: Singular Value Decomposition

We’ve seen why diagonalization is great. Unfortunately, not every matrix you care about is square.
Is there some sort of analogous matrix factorization? The answer is yes. To begin, we need some
theory.

If T : Rm → Rn is the linear transformation T (x) = Ax for A an n×m matrix, then T is determined

entirely by what it does to unit vectors u. This is because x = ‖x‖ x

‖x‖
, so T (x) = ‖x‖T (

x

‖x‖
).

The set of unit vectors in Rm is called the unit sphere, and is denoted by Sm−1. Therefore, to
understand T , we just need to know what the image of Sm−1 looks like under T .

The matrix A may not be square, but the matrix AtA is an m×m matrix, and moreover, AtA is
symmetric. By the Spectral Theorem, AtA is orthogonally diagonalizable. Let β = {v1, . . . , vm} be
an orthonormal eigenbasis of Rm, with eigenvalues λ1, . . . , λm.

Proposition 14. Let A be an n×m matrix. Then AtA ≥ 0.

Proof. We have xtAtAx = (Ax)tAx = (Ax) · (Ax) = ‖Ax‖2 ≥ 0 for all x.

In particular, this tells us that AtA has non-negative eigenvalues.

Proposition 15. Let A be an n ×m matrix and let v be a unit eigenvector of AtA of eigenvalue
λ. Then ‖Av‖ =

√
λ.

Proof. By the above, ‖Av‖2 = (Av) · (Av) = vtAtAv = vtλv = λ‖v‖2 = λ, since v is a unit vector.

This says ‖Av‖ =
√
λ.

Definition 16. The singular values of an n ×m matrix A are defined by σi =
√
λi, where λi

is an eigenvalue of AtA. By convention, we will always make sure to write the singular values in
descending order: σ1 ≥ σ2 . . . ≥ σm.

The above then says that ‖Avi‖ = σi.

Proposition 17. Let β = {v1, . . . , vm} be an orthonormal eigenbasis of AtA. Then (Avi)·(Avj) = 0
for all i 6= j.

Proof. (Avi) · (Avj) = vtjA
tAvi = vtjλivi = λi(vi · vj) = 0.

Proposition 18. Suppose that A is an n×m matrix with rank(A) = r. Then σ1, . . . , σr 6= 0 and
σr+1 = . . . = σm = 0.

Proof. Let σ1, . . . , σm be the singular values of A, and let β = {v1, . . . , vm} be an orthonormal
eigenbasis of Rm with eigenvectors of AtA. If y = Ax ∈ Im(A), write x = c1v1 + . . . + cmvm. We
have Ax = c1Av1 + . . .+ cmAvm, so Im(A) = Span{Av1, . . . , Avm}. By the above, the vectors Avi
are orthogonal, and therefore this is a linearly independent set that spans Im(A), so it’s a basis of
Im(A). Since rank(A) = r, we therefore must have only r vectors in this set. The only way this
can happen if is Avr+1, . . . , Avm = 0 (because of the ordering we imposed on the singular values),
so that ‖Avr+1‖ = . . . = ‖Avm‖ = 0 says σr+1 = . . . = σm = 0.
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We can now prove the following:

Theorem 19. Let A be an n × m matrix, and T (x) = Ax the associated linear transformation.
The image of Sm−1 under T is an ellipsoid in Rn.

Proof. Let β = {v1, . . . , vm} be our orthonormal eigenbasis of Rm with eigenvectors of AtA with
eigenvalues λ1, . . . , λm. Let x ∈ Sm−1 and suppose the β-coordinates of x are given by [x]β =
(c1, . . . , cm), so that c21 + . . . + c2m = 1. Then Ax = A(c1v1 + . . . + cmvm) = c1Av1 + . . . +
cmAvm. Suppose that λ1, . . . , λr are non-zero while λr+1, . . . , λm are 0, so that we may write

Ax = c1Av1 + . . . + crAvr. Then for 1 ≤ i ≤ r, σi 6= 0, so Ax = c1σ1
1

σ1
Av1 + . . . + crσr

1

σr
Avr.

Extend the orthonormal set { 1

σ1
Av1, . . . ,

1

σr
Avr} = {u1, . . . , ur} to an orthonormal basis γ =

{ 1

σ1
Av1, . . . ,

1

σr
Avr, ur+1, . . . , un} of Rn. We then have [Ax]γ = (c1σ1, . . . , crσr, 0, . . . , 0). Since

c21 + . . . + c2n = 1, in particular, c21 + . . . + c2r ≤ 1. This says Ax is a point in the ellipsoid (which
may be a solid ellipsoid) E = {(x1, . . . , xr, 0, . . . , 0) : (x1/σ1)2 + . . .+(xr/σr)

2 ≤ 1} in the subspace
spanned by u1, . . . , ur.

Example 20. Let A =

(
0 1 1
1 1 0

)
. We check that AtA =

1 1 0
1 2 1
0 1 1

, which has eigenvalues

λ1 = 3, λ2 = 1, and λ3 = 0. The singular values are given by σ1 =
√

3, σ2 = 1, and σ3 = 0. An
orthonormal eigenbasis of R3 is given by
β = {(1/

√
6, 2/
√

6, 1/
√

6), (1/
√

2, 0,−1/
√

2), (1/
√

3,−1/
√

3, 1/
√

3)}. Let x ∈ S2 be a point on
the unit sphere. If [x]β = (c1, c2, c3), we have c21 + c22 + c23 = 1, and Ax = c1Av1 + c2Av2 =

c1
√

3
1

σ1
Av1 + c2

1

σ2
Av2. With u1 =

1

σ1
Av1 and u2 =

1

σ2
Av2, we have γ = {u1, u2} is a basis of

R2. Then [Ax]γ = (c1
√

3, c2) is a point on the ellipse E = {(x1, x2) : (x1/
√

3)2 + x22 ≤ 1} in the
γ-coordinate system. Another way of putting it, E is the solid ellipse in R2 with semi-major and
semi-minor axes u1 and u2 of lengths

√
3 and 1 respectively.

The quadratic form associated to this ellipse in the γ-coordinate system is given by the matrix D =(
1/3 0
0 1

)
, and since the principal axes are given by u1 = (1/

√
2, 1/
√

2) and u2 = (−1/
√

2, 1/
√

2),

these are the eigenvectors of the quadratic form (in standard coordinates). Change of basis then
says that the matrix of the quadratic form in standard coordinates is given by A = SEγDS

γ
E =(

2/3 −1/3
−1/3 2/3

)
. In standard coordinates, this is given by

2

3
x2 − 2

3
xy +

2

3
y2 ≤ 1.

The above theorem can be used to give a matrix factorization as follows: let’s write down the
image Ax of a vector x ∈ Sm−1 with respect to the γ-coordinate system, where γ is the basis
as in the above theorem. Set β the orthonormal eigenbasis of AtA, {v1, . . . , vm}. We could first
start in the standard coordinate system of Rm, map to the standard coordinate system of Rn, and
then change coordinates to the γ-coordinate system. In terms of matrices, this says AγE = SγEA.
On the other hand, we could first change coordinates from E to β, and then convert the images
of Avi into γ-coordinates. In matrix land, this says AγE = AγβS

β
E , so that SγEA = AγβS

β
E . Multi-

plying though gives A = SEγA
γ
βS

β
E . Set SγE = U , Aγβ = Σ, and SβE = V t, which then gives A = UΣV t.

The matrix U is the change of basis matrix from the γ basis to the standard basis, and since γ is
orthonormal, U is orthogonal. Similar, V is the change of basis matrix from β to E , and since β
is orthonormal, V is orthogonal, and V t = V −1 is also orthogonal. Finally, The way we defined ui
was through the relation Avi = σiui. This says [Avi]γ = σiei, and so Aγβ = Σ is “diagonal” n×m
matrix with non-zero entries σ1, . . . , σr. This proves the following:
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Theorem 21 (Singular Value Decomposition). Let A be an n×m matrix with rank(A) = r. Then
there exist orthogonal n×n U , m×m V , and an n×m matrix Σ such that A = UΣV t. Explicitly,
the matrices are given as follows:

• U =
(
u1 . . . un

)
where ui =

1

σi
Avi for 1 ≤ i ≤ r, and {u1, . . . , ur, ur+1, . . . , un} forms an

orthonormal basis of Rn.

• V =
(
v1 . . . vm

)
where {v1, . . . , vm} form an orthonormal eigenbasis of Rm of eigenvectors

of AtA. By convention, vi is the eigenvector associated to λi of the matrix AtA where the
eigenvalues are in descending order: λ1 ≥ λ2 ≥ . . . ≥ λm.

• Σ has r non-zero diagonal entries σ1, . . . , σr and all other entries 0.

Example 22. Let A =

0 1
1 1
1 0

. Then At =

(
0 1 1
1 1 0

)
, and AtA =

(
2 1
1 2

)
. We have pAtA(λ) =

λ2−4λ+3 = (λ−3)(λ−1), so A has eigenvalues λ1 = 3 and λ2 = 1, with singular values σ1 =
√

3 and
σ2 = 1. A basis of the eigenspace E3 is given by {(1, 1)} and a basis of E1 is given by {(−1, 1)}, so an

orthonormal eigenbasis of R2 is given by β = {v1, v2} = {(1/
√

2, 1/
√

2), (−1/
√

2, 1/
√

2)}. Set u1 =
1

σ1
Av1 =

1√
3

(1/
√

2, 2/
√

2, 1/
√

2) = (1/
√

6,
√

2/3, 1/
√

6) and u2 =
1

σ2
Av2 = (1/

√
2, 0,−1/

√
2).

We now need to complete this to an orthonormal basis {u1, u2, u3} of R3. To get a unit vec-

tor orthogonal to u1 and u2, take u3 = u1 × u2 = (−1/
√

3, 1/
√

3,−1/
√

3). This gives U =1/
√

6 1/
√

2 −1/
√

3√
2/3 0 1/

√
3

1/
√

6 −1/
√

2 −1/
√

3

, V =

(
1/
√

2 −1/
√

2

1/
√

2 1/
√

2

)
, and Σ =

√3 0
0 1
0 0

.
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