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1. Introduction

It is a standard example in linear algebra courses that matrices of the form

Rθ =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
correspond to a linear transformation that rotates a vector v ∈ R2 counterclockwise around
the origin by an angle of θ ∈ [0, 2π).

It is evident that all such matrices Rθ are orthogonal of determinant 1, and conversely,
a simple algebraic computation shows that all orthogonal 2 × 2 matrices of determinant 1
can be written as Rθ for some θ. Therefore in R2, there is no difference between rotations
around the origin and determinant 1 orthogonal matrices.

The purpose of this handout is to prove an analogous result in R3.

2. Rotations in R3

Definition 2.1. The real special orthogonal group of dimension 3 is denoted as SO3(R) and
defined by

SO3(R) = {A ∈ M3(R) : A is orthogonal and det(A) = 1}.

Our goal is to prove the following theorem:

Theorem 2.2. Let A ∈ SO3(R). There there is θ ∈ [0, 2π) such that

A ∼

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

 .

Before we prove this, we’d first like to comment on what this is actually saying. Let
T : R3 → R3 be the linear transformation associated to A. The above theorem says there is
a basis β of R3 such that

[T ]β =

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

 .

If we let β = {v1, v2, v3}, then the vectors v1, v2, v3 form orthonormal coordinate axes for a
coordinate system. Geometrically, T is a rotation in the v1v2-plane around the v3-axis in
the counterclockwise direction (relative to v3). Hence, all elements of SO3(R) represent a
rotation around some axis, and so it makes sense to talk about SO3(R) as the set of rotations
in R3.
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The proof of theorem 2.2 is rather elementary, but is interesting because of it’s synthesis
of all the standard topics in a first year linear algebra course. First, we show that any matrix
in SO3(R) fixes some line.

Lemma 2.3. Let A ∈ SO3(R). Then 1 is an eigenvalue of A.

Proof. Writing pA(x) = det(A− xI), then we see that pA(x) may be written as

pA(x) = −x3 + Tr(A)x2 − cx+ det(A)

for some c ∈ R. Since det(A) = 1, this means

pA(x) = −x3 + Tr(A)x2 − cx+ 1

for some c ∈ R. As pA(0) = 1 and limx→∞ pA(x) = −∞, this means there is some λ ∈ (0,∞)
with pA(λ) = 0. As A is orthogonal, the only possible real eigenvalues of A are ±1, and
therefore this forces λ = 1 as desired. □

Next, we need a general fact about linear independence of eigenvectors corresponding to
distinct eigenvalues. We prove this in the special case when A ∈ M3(R), although we remark
this is true regardless of the dimension and can be found in any linear algebra textbook.

Lemma 2.4. Suppose that λ1, λ2, λ3 ∈ C are distinct eigenvalues of a matrix A ∈ M3(R).
Then A is diagonalizable over C.

Proof. Let v1, v2, v3 ∈ C3 denote eigenvectors for λ1, λ2, λ3 respectively. We first show that
v1, v2 are linearly independent. Suppose that

c1v1 + c2v2 = 0

for some ci ∈ C. Applying A to both sides, we obtain

c1λ1v1 + c2λ2v2 = 0.

Similarly, multiplying the first equation by λ1 we obtain

c1λ1v1 + c2λ1v2 = 0.

Subtracting the two equations, we find

c2(λ2 − λ1)v2 = 0.

This then means that c2 = 0, and therefore that c1 = 0 as well, which shows that v1, v2 are
linearly independent.

Now, suppose that
c1v1 + c2v2 + c3v3 = 0

for some ci ∈ C.

As before, applying A, multiplying by λ3, and subtracting, we find

c1(λ3 − λ1)v1 + c2(λ3 − λ2)v2 = 0.

Both these coefficients must be 0 because v1, v2 are linearly independent, and therefore
c1 = c2 = c3 = 0 as desired.

□

We’re now ready to begin the proof of theorem 2.2.
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Proof of Theorem 2.2. Let λ1, λ2, λ3 ∈ C be the eigenvalues of A. By lemma 2.3, we know
λ1 = 1 is an eigenvalue, and because det(A) = λ1λ2λ3 = 1 and complex roots come in
conjugate pairs, this means λ3 = λ2. For brevity, we write λ2 := λ. Therefore, we see that
|λ| = 1, and so writing λ in polar coordinates, there is θ ∈ [0, 2π) such that λ = eiθ.

We first deal with the case where λ is not real. Let v ∈ C3 be an eigenvector for λ.
Write v = u + iw for u,w ∈ R3 as a sum of its real and imaginary parts. Writing out
λ = cos(θ) + i sin(θ), and using Av = λv, we therefore find

Au = cos(θ)u− sin(θ)w

and
Aw = sin(θ)u+ cos(θ)w.

Let x be an eigenvector for 1. The claim is that β = {u,w, x} is a basis of R3, from which
the theorem then follows from the change of basis formula. To that end, note that

v = u− iw

is an eigenvector for A of eigenvalue λ. Suppose for some c1, c2, c3 ∈ R that

c1x+ c2u+ c3w = 0.

Writing u = 1
2
(v + v) and w = 1

2
(v − v), this means that

c1x+ (
1

2
c2 +

1

2
c3)v + (

1

2
c2 −

1

2
c3)v = 0.

By lemma 2.4, the set of vectors {x, v, v} is linearly independent because they are eigen-
vectors for distinct eigenvalues. Therefore, all coefficients in the previous linear combination
must be 0, which means c1 = c2 = c3 = 0 as desired.

It remains to see what happens when λ is real – surprisingly, this is much harder. In this
case, as noted in lemma 2.3, the only possibilities for λ are λ = ±1. We’ll first start with
the case λ = −1, as this is easier. In this situation, we have two different eigenvalues, 1 and
−1, of algebraic multiplicities 1 and 2 respectively. We will show that dim(E−1) = 2, which
would mean that A is diagonalizable, and therefore has the desired form (taking θ = π).

Let v be an eigenvector for 1 and let w be an eigenvector for −1. Let V = Span{v, w},
and note that dim(V ) = 2 by the argument of lemma 2.4. For any u ∈ V ⊥, we note that
Au ∈ V ⊥ too: this is because by orthogonality of A, we must have

Au · v = Au · Av = u · v = 0

and
Au · w = Au · A(−w) = u · (−w) = 0.

Now, because dim(V ⊥) = 1, this means that Au = cu for some c ∈ R, and therefore u
is an eigenvector of A. Certainly u ̸∈ E1 because dim(E1) = 1, and therefore this means
u ∈ E−1. As u · w = 0, {u,w} is linearly independent, which then forces dim(E−1) = 2 as
desired.

The only remaining case is λ = 1. Here, there is a single eigenvalue of algebraic multiplic-
ity 3.
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Our goal is to show that E⊥
1 = {0}. It then follows that E1 = R3, and therefore this forces

A = I, so A has the desired form. To see this, let v ∈ E1 and w ∈ E⊥
1 . By definition, this

means w · v = 0, and because A is orthogonal,

Aw · Av = Aw · v = 0,

which means Aw ∈ E⊥
1 as well. Now, consider the vectors w,Aw. If Aw = w, then w ∈ E1,

so w ∈ E1 ∩ E⊥
1 = {0} means w = 0 and we’re done. Therefore, we may assume that

Aw ̸= w. It then follows that {w,Aw} must be linearly independent (we said the only
eigenvalue of A is 1, so these can never be scalar multiples of each other!). Therefore, this
means β = {v, w,Aw} is a basis of R3, and in particular, {w,Aw} forms a basis of E⊥

1 .

Now, as A2w ∈ E⊥
1 , we may write

A2w = c1w + c2Aw

for some c1, c2 ∈ R, and therefore we find that

(A2 − c2A− c1I)w = 0.

Let r1, r2 denote the roots of the polynomial x2 − c2x− c1. Then factoring, this means

(A− r2I)(A− r1I)w = (A− r1I)(A− r2I)w = 0.

If one of r1, r2 ̸= 1, then one of det(A− r1I), det(A− r2I) ̸= 0 (because the only eigenvalue
is assumed to be 1!), and therefore the corresponding matrix is invertible over C. This then
means either

(A− r1I)w = 0

or
(A− r2I)w = 0,

which means that w is an eigenvector. This would then force w ∈ E1 ∩ E⊥
1 = {0}, which

contradicts our assumption that Aw ̸= w. Therefore, we may assume that r1 = r2 = 1. In
this case, we must have

(A− I)2w = 0.

However, this means (A − I)(Aw − w) = 0, and therefore Aw − w ∈ E1. This contradicts
that {v, w,Aw} is a basis, and so the only possibility is that E⊥

1 = {0} as desired.

□

Example 2.5. Consider

A =

1/3 2/3 −2/3
2/3 1/3 2/3
2/3 −2/3 −1/3

 ,

which is easily seen to be orthogonal and has determinant 1. The characteristic polynomial
of A is given by

pA(x) = −x3 +
1

3
(x2 − x) + 1,

and so the eigenvalues of A are

1,
1

3
(−1± 2i

√
2).
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We take

λ =
1

3
(−1 + 2i

√
2) = −1

3
+

2
√
2

3
i = cos(θ) + i sin(θ).

One may compute that an eigenvector for λ is given by

v = u+ iw =

0
0
1

+ i

 1/
√
2

−1/
√
2

0

 ,

and an eigenvector for 1 is

x =

1
1
0

 .

Then

β =

{0
0
1

 ,

 1/
√
2

−1/
√
2

0

 ,

1
1
0

}
is a basis of R3, and relative to this basis the matrix of the linear transformation T (x) = Ax
is

[T ]β =

 −1/3 2
√
2/3 0

−2
√
2/3 −1/3 0

0 0 1

 .

The axis of rotation is the the line spanned by1
1
0

 ,

and the angle of rotation is θ = π − arctan(2
√
2) ≈ 1.91.

Remark 2.6. In dimension n, we write SOn(R) to mean the real n×n orthogonal matrices
of determinant 1. For n > 3 odd, the same argument as in lemma 2.3 shows that A must
have 1 as an eigenvalue, and therefore must fix a line. However, this is not true in general!
When n = 4, the matrix

A =


1/2

√
3/2 0 0

−
√
3/2 1/2 0 0

0 0 1/
√
2 1/

√
2

0 0 −1/
√
2 1/

√
2

 ∈ SO4(R)

does not have 1 as an eigenvalue, and therefore does not fix any line!
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