ROTATIONS IN R3

TIM SMITS

1. INTRODUCTION

It is a standard example in linear algebra courses that matrices of the form

m= (50 )

correspond to a linear transformation that rotates a vector v € R? counterclockwise around
the origin by an angle of 6 € [0, 27).

It is evident that all such matrices Ry are orthogonal of determinant 1, and conversely,
a simple algebraic computation shows that all orthogonal 2 x 2 matrices of determinant 1
can be written as Ry for some 6. Therefore in R?, there is no difference between rotations
around the origin and determinant 1 orthogonal matrices.

The purpose of this handout is to prove an analogous result in R3.

2. ROTATIONS IN R?

Definition 2.1. The real special orthogonal group of dimension 3 is denoted as SO3(R) and
defined by
SO3(R) = {A € M3(R) : A is orthogonal and det(A) = 1}.

Our goal is to prove the following theorem:

Theorem 2.2. Let A € SO3(R). There there is 6 € [0,2m) such that

cos(f) sin(f) 0
A~ | —sin(f) cos(d) 0
0 0 1

Before we prove this, we’d first like to comment on what this is actually saying. Let
T : R? — R3 be the linear transformation associated to A. The above theorem says there is
a basis 8 of R? such that

cos(f) sin(d) 0

[T)g = | —sin(f) cos(d) 0

0 0 1
If we let 8 = {v1,v2,v3}, then the vectors vy, vy, v3 form orthonormal coordinate axes for a
coordinate system. Geometrically, 7" is a rotation in the vjv,-plane around the vs-axis in
the counterclockwise direction (relative to v3). Hence, all elements of SO3(R) represent a

rotation around some axis, and so it makes sense to talk about SO3(R) as the set of rotations
in R3.
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The proof of theorem 2.2 is rather elementary, but is interesting because of it’s synthesis
of all the standard topics in a first year linear algebra course. First, we show that any matrix
in SO3(R) fixes some line.

Lemma 2.3. Let A € SO3(R). Then 1 is an eigenvalue of A.

Proof. Writing pa(z) = det(A — zI), then we see that p4(z) may be written as
pa(r) = =2 + Tr(A)a® — cx + det(A)

for some ¢ € R. Since det(A) = 1, this means

pa(r) = =2 + Tr(A)z? — cx + 1

for some ¢ € R. As p4(0) = 1 and lim, o, pa(x) = —oo, this means there is some A € (0, c0)
with pa(A) = 0. As A is orthogonal, the only possible real eigenvalues of A are 1, and
therefore this forces A = 1 as desired. O

Next, we need a general fact about linear independence of eigenvectors corresponding to
distinct eigenvalues. We prove this in the special case when A € M3(R), although we remark
this is true regardless of the dimension and can be found in any linear algebra textbook.

Lemma 2.4. Suppose that A1, A2, A3 € C are distinct eigenvalues of a matriz A € M3(R).
Then A is diagonalizable over C.

Proof. Let vy, vy, v3 € C? denote eigenvectors for \j, Ao, A3 respectively. We first show that
vy, V9 are linearly independent. Suppose that

C1V1 + covg = 0
for some ¢; € C. Applying A to both sides, we obtain
C1A1V1 + o Aovy = 0.
Similarly, multiplying the first equation by A\; we obtain
CiA V1 + caA\jvg = 0.
Subtracting the two equations, we find
ca(Ag — A1)y = 0.

This then means that ¢, = 0, and therefore that ¢; = 0 as well, which shows that v, v, are
linearly independent.

Now, suppose that
C1VU1 + CoUg + C3V3 = 0
for some ¢; € C.

As before, applying A, multiplying by A3, and subtracting, we find
Cl()\g — )\1)?]1 + C2()\3 — )\2)’02 =0.

Both these coefficients must be 0 because vy, v, are linearly independent, and therefore
c1 = ¢y = c3 = 0 as desired.

OJ
We’re now ready to begin the proof of theorem 2.2.
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Proof of Theorem 2.2. Let A, Ao, A3 € C be the eigenvalues of A. By lemma 2.3, we know
A1 = 1 is an eigenvalue, and because det(A) = AAA3 = 1 and complex roots come in
conjugate pairs, this means A3 = . For brevity, we write Ay := A. Therefore, we see that
|A| = 1, and so writing A in polar coordinates, there is § € [0,27) such that \ = e®.

We first deal with the case where A is not real. Let v € C3 be an eigenvector for .
Write v = u + fw for u,w € R? as a sum of its real and imaginary parts. Writing out
A = cos(6) +isin(f), and using Av = Av, we therefore find

Au = cos(0)u — sin(0)w
and
Aw = sin(0)u + cos(0)w.
Let x be an eigenvector for 1. The claim is that 3 = {u, w,x} is a basis of R?, from which
the theorem then follows from the change of basis formula. To that end, note that

U =1u— 1w
is an eigenvector for A of eigenvalue X. Suppose for some ¢y, ¢o, c5 € R that
x4 cou + cgw = 0.
Writing u = (v + ) and w = $(v — ©), this means that
1 1 1 1
a1+ (zc2+ =c3)v+ (zc2 — =c3)v = 0.
1 (2 25 3) (2 275 3)
By lemma 2.4, the set of vectors {x,v, 7} is linearly independent because they are eigen-
vectors for distinct eigenvalues. Therefore, all coefficients in the previous linear combination
must be 0, which means ¢; = ¢o = ¢3 = 0 as desired.

It remains to see what happens when A is real — surprisingly, this is much harder. In this
case, as noted in lemma 2.3, the only possibilities for A are A = £1. We'll first start with
the case A = —1, as this is easier. In this situation, we have two different eigenvalues, 1 and
—1, of algebraic multiplicities 1 and 2 respectively. We will show that dim(£_;) = 2, which
would mean that A is diagonalizable, and therefore has the desired form (taking 6 = ).

Let v be an eigenvector for 1 and let w be an eigenvector for —1. Let V = Span{v, w},
and note that dim(V) = 2 by the argument of lemma 2.4. For any u € V*, we note that
Au € V* too: this is because by orthogonality of A, we must have

Auv-v=Au-Av=u-v=0
and
Au-w = Au- A(—w) = u - (—w) = 0.
Now, because dim(V+) = 1, this means that Au = cu for some ¢ € R, and therefore u
is an eigenvector of A. Certainly u ¢ FE; because dim(F;) = 1, and therefore this means

u€ FE 1. Asu-w =0, {u,w} is linearly independent, which then forces dim(F_;) = 2 as
desired.

The only remaining case is A = 1. Here, there is a single eigenvalue of algebraic multiplic-
ity 3.



4 TIM SMITS

Our goal is to show that E{- = {0}. It then follows that £, = R3 and therefore this forces
A =1, so A has the desired form. To see this, let v € E; and w € Ef. By definition, this
means w - v = 0, and because A is orthogonal,

Aw - Av = Aw - v =0,

which means Aw € Ei- as well. Now, consider the vectors w, Aw. If Aw = w, then w € E,
sow € EyNEL = {0} means w = 0 and we’re done. Therefore, we may assume that
Aw # w. It then follows that {w, Aw} must be linearly independent (we said the only
eigenvalue of A is 1, so these can never be scalar multiples of each other!). Therefore, this
means 3 = {v,w, Aw} is a basis of R?, and in particular, {w, Aw} forms a basis of Ej-.

Now, as A?w € Ei, we may write
A%w = cqw + ey Aw
for some ¢q,co € R, and therefore we find that
(A% — A — c;w = 0.
Let 71,79 denote the roots of the polynomial 22 — coz — ¢;. Then factoring, this means
(A—rol)(A—rD)w=(A—rI)(A—rl)w=0.

If one of ry, 79 # 1, then one of det(A — riI),det(A — ro1) # 0 (because the only eigenvalue
is assumed to be 1!), and therefore the corresponding matrix is invertible over C. This then
means either

(A=—rlHw=0
or

(A — 7“2[)’(1} = O,
which means that w is an eigenvector. This would then force w € E; N E{ = {0}, which
contradicts our assumption that Aw # w. Therefore, we may assume that r; = r, = 1. In
this case, we must have

(A—I)*w=0.
However, this means (A — I)(Aw — w) = 0, and therefore Aw —w € E;. This contradicts
that {v,w, Aw} is a basis, and so the only possibility is that Ei- = {0} as desired.

O

Example 2.5. Consider
1/3 2/3 -=2/3
A=12/3 1/3 2/3 |,
2/3 —=2/3 —1/3
which is easily seen to be orthogonal and has determinant 1. The characteristic polynomial

of A is given by
1
pa@) = =2’ + 2(2* —z) + 1,

and so the eigenvalues of A are

1,%(—1 + 2iV/2).
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We take

1 1 22
\ = g(—l +2iV/2) = -3 + %_1 = cos(#) + isin(6).

One may compute that an eigenvector for A is given by

0 1/v/2
v=u+iw=|0]+i|-1/vV2],
1 0

and an eigenvector for 1 is

Then

()

is a basis of R?, and relative to this basis the matrix of the linear transformation T'(z) = Ax

: —1/3  2v2/3 0

Tlg=|-2v2/3 —-1/3 0
0 0 1
The axis of rotation is the the line spanned by
1
1 7
0

and the angle of rotation is § = 7 — arctan(2y/2) ~ 1.91.

Remark 2.6. In dimension n, we write SO, (R) to mean the real n x n orthogonal matrices
of determinant 1. For n > 3 odd, the same argument as in lemma 2.3 shows that A must
have 1 as an eigenvalue, and therefore must fix a line. However, this is not true in general!
When n = 4, the matrix

/2 V3/2 0 0

Ao —V/3/2  1/2 0 0
B 0 0 1/vV2 1/v2
0 0 —1/vV2 1/V2

does not have 1 as an eigenvalue, and therefore does not fix any line!

€ SO4(R)
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