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1. Introduction

For a function f : R2 → R, the tangent plane

z − f(x0, y0) = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

provides a “good” approximation to the function f(x, y) at points near (x0, y0), analogous
to how in one dimension, a function f : R → R may be well approximated near a point x0

by the tangent line
y − f(x0) = f ′(x0)(x− x0).

One of the core tools of calculus is the Taylor polynomial: for any n ≥ 1, a smooth (i.e.
infinitely differentiable) function f : R → R may be well-approximated at x0 by the n-th
order Taylor polynomial

Pn(x) = f(x0) + f ′(x0)(x− x0) + . . .+
f (n)(x0)

n!
(x− x0)

n.

Taylor’s theorem, one of the major results of single variable calculus, quantifies how “good”
this approximation is:

Theorem 1.1 (Taylor). Let f : R → R be a smooth function, and let x0 ∈ R. Then for any
n ≥ 1, there exists a function hn(x) such that

f(x) = Pn(x) + hn(x)(x− x0)
n

and
lim
x→x0

hn(x) = 0.

The function hn(x) controls the error term Rn(x) = f(x)− Pn(x), and the conditions on
hn(x) say that the error tends to 0 faster than (x − x0)

n as x → x0. The purpose of this
handout is to investigate the multivariate analogue of the Taylor polynomial, and a higher
dimensional version of Taylor’s theorem.

2. Definitions and Examples

Perhaps unsurprisingly, the correct way to generalize a Talyor polynomial to multiple
dimensions is to include all the partial derivatives of a given degree. For the sake of con-
creteness, we’ll restrict our attention to functions f : R2 → R. However, everything we do
will naturally generalize to higher dimensions.

Definition 2.1. Let f : R2 → R be smooth. For P = (x0, y0) the n-th order Taylor
polynomial Pn(x, y) is defined by

Pn(x, y) =
n∑

k=0

∑
i+j=k

(
k

i, j

) ∂kf
∂xiyj

(x0, y0)

k!
(x− x0)

i(y − y0)
j.
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Here, the sum is taken over all pairs (i, j) such that i + j = k and k varies from k = 0
to k = n, and

(
k
i,j

)
is a multinomial coefficient, defined by

(
k
i,j

)
= k!

i!j!
. The multinomial

coefficient
(
k
i,j

)
counts the number of times in which the expression xiyj appears in the

expansion of (x + y)k. This coefficient is needed because e.g. the second degree Talyor
polynomial must account for both fxy and fyx (which, for smooth functions, are equal),
and all the possible permutations of k-th order patial derivatives appear as terms in the
expansion (x+ y)k. The expression defined above may then be written more succinctly as

Pn(x, y) =
n∑

k=0

∑
i+j=k

∂kf
∂xiyj

(x0, y0)

i!j!
(x− x0)

i(y − y0)
j.

Example 2.2. Let f(x, y) = ex sin(y). By the above, the second order Taylor polynomial
of f(x, y) at P = (0, 0) is given by

P2(x, y) = f(0, 0) + fx(0, 0)x+ fy(0, 0)y +
1

2
fxx(0, 0)x

2 + fxy(0, 0)xy +
1

2
fyy(0, 0)y

2.

It’s easy to compute fx(0, 0) = 0, fy(0, 0) = 1, fxx(0, 0) = 0, fyy(0, 0) = 0, fxy = 1, so that

P2(x, y) = y + xy.

This is a better approximation to f(x, y) near (0, 0) than the tangent plane approximation!

Now, we state the two dimensional version of Taylor’s theorem.

Theorem 2.3 (Taylor). Let f : R2 → R be a smooth function, and let P = (x0, y0). Then
for any n ≥ 1, there exists a function hn(x, y) such that

f(x, y) = Pn(x, y) +
∑
i+j=n

hn(x, y)(x− x0)
i(y − y0)

j

and

lim
(x,y)→(x0,y0)

hn(x, y) = 0.

In one dimension, we have a nice theorem that gives us an upper bound on the error in
the Taylor approximation:

Theorem 2.4. Let f : R → R be smooth. Let x0 ∈ R and n ≥ 1. Fix r > 0, and let M be
such that |f (n+1)(z)| ≤ M for all z ∈ [x0 − r, x0 + r]. Then

|f(x)− Pn(x)| ≤
M |x− x0|n+1

(n+ 1)!
.

The two dimensional analogue is the following:

Theorem 2.5. Let f : R2 → R be smooth. Let P = (x0, y0) ∈ R2 and n ≥ 1. Fix r > 0, and

let M be such that for each pair (i, j) with i+ j = n+ 1, | ∂n+1f
∂xi∂yj

(u, v)| ≤ M for all (u, v) in

the disk D(P, r). Then

|f(x, y)− Pn(x, y)| ≤
M∥(x, y)− (x0, y0)∥n+1

(n+ 1)!
.
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Example 2.6. Let f(x, y) = ex sin(y) as before, and suppose we wished to estimate f(−.1, .1)
using the second order Taylor polynomial P2(x, y) = y+xy centered at P = (0, 0) computed
above. How good is this approximation?

For i + j = 3, we see that ∂3f
∂xiyj

(x, y) takes the form ±ex sin(y) or ±ex cos(y). Either

way, | ∂3f
∂xiyj

(x, y)| ≤ ex because | cos(y)| ≤ 1 and | sin(y)| ≤ 1 always holds. On the disk

D(P, .1) the maximum value of ex is simply e.1, which means that | ∂3f
∂xiyj

(u, v)| ≤ e.1 is true

on D(P, .1). By the error bound formula, this then means that

|f(−.1, .1)− P2(−.1, .1)| ≤ e.1∥(−.1, .1)− (0, 0)∥3

3!
=

e.1
√
2

3000
≈ .0005,

which means that P2(−.1, .1) is at most .0005 away from f(−.1, .1). We compute P2(−.1, .1) =
.1− .01 = .09, which means that the true value of f(−.1, .1) lives somewhere in the interval
(.0895, .0905) (and in fact, if one uses a calculator they will find f(−.1, .1) ≈ .0903).
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