MULTIVARIATE TAYLOR POLYNOMIALS

TIM SMITS

1. INTRODUCTION
For a function f:R? — R, the tangent plane
z — f(%o,90) = fe(0, y0)(x — T0) + £, (%0, Y0) (Y — ¥o)

provides a “good” approximation to the function f(z,y) at points near (xg, o), analogous
to how in one dimension, a function f : R — R may be well approximated near a point xg
by the tangent line
y — flxo) = f(zo)(x — 20).

One of the core tools of calculus is the Taylor polynomial: for any n > 1, a smooth (i.e.
infinitely differentiable) function f : R — R may be well-approximated at z by the n-th
order Taylor polynomial

(n)
Poa) = flan) + o) — wo) ...+ L)
Taylor’s theorem, one of the major results of single variable calculus, quantifies how “good”
this approximation is:

Theorem 1.1 (Taylor). Let f : R — R be a smooth function, and let xo € R. Then for any
n > 1, there exists a function hy,(x) such that

f(x) = Bu(@) + ho () (2 — 20)"

(x — x0)".

and
lim h,(z) = 0.
T—T0
The function h,(z) controls the error term R, (z) = f(z) — P,(z), and the conditions on
h,(x) say that the error tends to O faster than (z — )" as © — xy. The purpose of this
handout is to investigate the multivariate analogue of the Taylor polynomial, and a higher
dimensional version of Taylor’s theorem.

2. DEFINITIONS AND EXAMPLES

Perhaps unsurprisingly, the correct way to generalize a Talyor polynomial to multiple
dimensions is to include all the partial derivatives of a given degree. For the sake of con-
creteness, we'll restrict our attention to functions f : R? — R. However, everything we do
will naturally generalize to higher dimensions.

Definition 2.1. Let f : R? — R be smooth. For P = (x¢,y) the n-th order Taylor
polynomial P,(x,y) is defined by

Z >, ( )mj—w(x—xo)i(y—yo)j-

k=0 i+j=k
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Here, the sum is taken over all pairs (7, ) such that i + j = k and k varies from k = 0

to k = n, and ( ) is a multinomial coefficient, defined by ( ) — M. The multinomial
2] 13-

coefficient (Zk]) counts the number of times in which the expression x'y’ appears in the

expansion of (z + y)*. This coefficient is needed because e.g. the second degree Talyor
polynomial must account for both f,, and f,, (which, for smooth functions, are equal),
and all the possible permutations of k-th order patial derivatives appear as terms in the
expansion (x + y)¥. The expression defined above may then be written more succinctly as

Parg) =3 3 I iy

Example 2.2. Let f(z,y) = e”sin(y). By the above, the second order Taylor polynomial
of f(z,y) at P =(0,0) is given by

Py(z,y) = f(0,0) + f2(0,0)z + £,(0,0)y + %fm(O, 0)2* + fay (0, 0)zy + %fyy(O, 0)y*
It’s easy to compute f,(0,0) =0, f,(0,0) =1, f,,(0,0) =0, f,,(0,0) =0, f,,, = 1, so that
Py(z,y) =y + ay.
This is a better approximation to f(x,y) near (0,0) than the tangent plane approximation!
Now, we state the two dimensional version of Taylor’s theorem.

Theorem 2.3 (Taylor). Let f: R*> — R be a smooth function, and let P = (xq,yo). Then
for any n > 1, there exists a function hy,(z,y) such that

fz,y) = Paz,y) + Z ha(2,y) (@ — 20)'(y — yo)’
and

lim  hy(z,y) =0.

(z,y)—(z0,y0)
In one dimension, we have a nice theorem that gives us an upper bound on the error in

the Taylor approximation:

Theorem 2.4. Let f : R — R be smooth. Let xg € R andn > 1. Fizr > 0, and let M be
such that |f™V(2)| < M for all z € [wg — 7,20 +7]. Then
Mll‘ _ x0|n+1
— P, < 2o
@) = Puw)| < 2

The two dimensional analogue is the following:

Theorem 2.5. Let f : R? — R be smooth. Let P = (xg,90) € R* andn > 1. Fizr >0, and
let M be such that for each pair (i,j) withi+j=n+1, g;;é(u v)| < M for all (u,v) in
the disk D(P,r). Then

MH(?C’Z/) - (SL’(J,?J0)||HJr1

[f(2,y) = Palz,9)] < (n+1)!
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Example 2.6. Let f(z,y) = e”sin(y) as before, and suppose we wished to estimate f(—.1,.1)
using the second order Taylor polynomial P(x,y) = y+ xy centered at P = (0,0) computed
above. How good is this approximation?

For i + j = 3, we see that 0 (x,y) takes the form +e”sin(y) or +e” cos(y). Either

OxtyI

way, |%($,y)| < e” because |cos(y)] < 1 and |sin(y)| < 1 always holds. On the disk
D(P,.1) the maximum value of e¢” is simply e'!, which means that \88:;; (u,v)| < el is true

on D(P,.1). By the error bound formula, this then means that

A(=.1,.1) — 3 ely/2

=) = QO eV o
3! 3000

which means that Py(—.1,.1) is at most .0005 away from f(—.1,.1). We compute P»(—.1,.1) =

.1 —.01 = .09, which means that the true value of f(—.1,.1) lives somewhere in the interval
(.0895,.0905) (and in fact, if one uses a calculator they will find f(—.1,.1) ~ .0903).

1f(—=1,.1) = Py(—.1,.1)| <
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