
Infinite Series Problems
Tim Smits

Test Applicable Series Conclusion Additional

Always try this first.

Divergence
∑

an Diverges if lim
n→∞

an 6= 0 Inconclusive if lim
n→∞

an = 0.

Can not show convergence!!

Geometric Series

∞∑
n=M

crn Converges if |r| < 1, diverges if |r| ≥ 1 Converges to value
crM

1− r

If
∑

bn converges, then
∑

an converges

Direct Comparison
∑

an and
∑

bn

with 0 ≤ an ≤ bn eventually If
∑

an diverges, then
∑

bn diverges

Limit Comparison
∑

an and
∑

bn with 0 < an, bn
∑

an and
∑

bn both converge or diverge

and lim
n→∞

an

bn
= L, 0 < L <∞

Integral
∑

an with an = f(n) continuous,
∑

an and

∫ ∞

M

f(x) dx both converge or diverge |S − SN | ≤
∫ ∞

N

f(x) dx

positive, decreasing eventually for n ≥M

p-Series

∞∑
n=1

1

np
Converges if p > 1, diverges if p ≤ 1

If
∑

an converges but

Absolute Convergence
∑

an If
∑
|an| converges,

∑
an converges absolutely

∑
|an| diverges, we call this

conditional convergence

Ratio
∑

an with an 6= 0 and lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L Converges (absolutely) if L < 1, diverges if L > 1 Inconclusive if L = 1

Root
∑

an with lim
n→∞

n
√
|an| = L Converges (absolutely) if L < 1, diverges if L > 1 Inconclusive if L = 1

∑
(−1)nan with an positive,

Alternating Series monotonically decreasing eventually,
∑

(−1)nan converges |S − SN | ≤ aN+1

and lim
n→∞

an = 0

*For series where the starting index of summation does not matter, we simply write
∑

an.

Strategies for testing series

� The first thing to check is if lim
n→∞

an = 0, to see if it is even possible for the series to converge.

� Check if the series has a special form. Does it look geometric? Is it a p-series? In these cases, we know exactly how the
series behaves. Does it alternate? Try the alternating series test. If the series has negative terms but is not alternating, try
seeing if it converges absolutely. Even if the series is alternating, this is sometimes faster.

� If the series involves factorials or n-th powers try the ratio test. The root test isn’t great to use when you see factorials –
where it really shines is when you see expressions of the form nn, or exponents with other powers of n. If you can’t think
of a test to try, the ratio test is rarely a bad idea.

� If an is bounded, try a direct/limit comparison test. Analyze the behavior of an as n approaches infinity. This will give you
other series to compare with either directly or using the limit comparison test. In general, these are the most useful tests.

� If an looks simple to integrate, try the integral test. If you can’t tell if an is something that can be integrated or not, try
this last.

� If an is a rational function, try using partial fractions to see if the series telescopes to calculate the value of the series.

� If all else fails, check to see if the series is a cleverly disguised telescoping series.
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Determine the (conditional) convergence or divergence of the following infinite series, and if
possible, compute the value of the sum. Starred problems are challenges.

1.

∞∑
n=0

1

2n − 1 + cos2(n3)

2.

∞∑
n=3

1

ln (ln (n))

3.*

∞∑
n=1

lnn

np
where p > 0 is an arbitrary constant.

4.

∞∑
n=0

(−1)n
n2n

(1 + n2)n

5.

∞∑
n=0

(n!)2

(2n)!

6.

∞∑
n=1

(−1)n
1

n1+1/n

7.

∞∑
n=1

(
1−

√
1− 1

n

)
(Hint: multiply and divide by the conjugate expression)

8.*

∞∑
n=2

logn(n!)

n3
where logn means the base n logarithm.

9.

∞∑
n=0

cos(n)

1 + ln(n) + n2 + 2n + n!

10.*

∞∑
n=2

ln

(
1 +

1

n2

)

11.*

∞∑
n=0

n!

(n + 1)n

(
19

7

)n

12.

∞∑
n=0

ne−n
3

13.*

∞∑
n=1

sin (
√
n2 + n− n)

n

14.

∞∑
n=1

(−1)n2n−332n+1

53n

15.

∞∑
n=1

n2 sin(n + ln(n))

n4 + 4n

16.

∞∑
n=1

n10 + 11n

n11 + 10n

17.*

∞∑
n=1

(1− e−n)n

18.

∞∑
n=1

(−1)n sin

(
1

n

)
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19.

∞∑
n=2

1

ln(n)3

20.

∞∑
n=2

1

ln(n)n

21.

∞∑
n=1

1

nlnn

22.*

∞∑
n=1

(−1)n(
√
n + 1−

√
n)

23.

∞∑
n=0

n!

en2

24.

∞∑
n=1

2n + n2 − ln(n)

n!

25.

∞∑
n=1

(−1)n( n
√
n− 1)n
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Solutions

The solutions presented below are what I personally thought was the easiest approach – there are
certainly other ways to approach these problems. (If you find easier solutions let me know!)

1. As n→∞, the term in the denominator that makes the biggest contribution is 2n. Therefore

we expect

∞∑
n=0

1

2n − 1 + cos2 n3
and

∞∑
n=0

1

2n
to have the same behavior, and the latter is a

convergent geometric series. Using the limit comparison test with an =
1

2n − 1 + cos2 n3
and

bn =
1

2n
, we have lim

n→∞

an
bn

= lim
n→∞

2n

2n − 1 + cos2 n3
= lim

n→∞

1

1− 1
2n + cos2 n3

2n

= 1. Therefore

by the limit comparison test,

∞∑
n=0

1

2n − 1 + cos2 n3
converges .

2. As lnn < n for all n ≥ 3, we then have ln lnn < lnn < n for all n ≥ 3 as well, so that
1

n
<

1

ln lnn
for n ≥ 3. Since

∞∑
n=3

1

n
diverges, by a direct comparison test we see

∞∑
n=3

1

ln lnn
diverges .

3. Here we use the integral test. The function f(x) =
lnx

xp
has derivative f ′(x) = (1 −

p lnx)x−p−1, which is negative for x > e1/p. Let N be a integer larger than e1/p. Then
∞∑

n=N

lnn

np
and

∞∫
N

lnx

xp
dx have the same behavior. The latter integral can be done using in-

tegration by parts, with u = lnx and dv = x−p. We find

∞∫
N

lnx

xp
dx =

x1−p lnx

1− p

∣∣∣∣∞
N

−

1

1− p

∞∫
N

x−p dx =
x1−p lnx

1− p

∣∣∣∣∞
N

− x1−p

(1− p)2

∣∣∣∣∞
N

=
x1−p((1− p) lnx− 1)

(1− p)2

∣∣∣∣∞
N

= lim
R→∞

R1−p((1− p) lnR− 1)

(1− p)2
−

N1−p((1− p) lnN − 1)

(1− p)2
. If 0 < p < 1, we see the limit is infinite. If p > 1, using L’Hopital’s

rule (or squeeze theorem) shows the limit exists. What happens for p = 1? In the case, we

care about

∞∫
N

lnx

x
dx, and this is seen to diverge using a u-substitution. Therefore by the

integral test, we have the following behavior:

{
converges p > 1

diverges 0 < p ≤ 1
.

4. Note that
n2n

(1 + n2)n
=

(
n2

1 + n2

)n

. Set L = lim
n→∞

(
n2

1 + n2

)n

, then lnL = lim
n→∞

n ln
n2

n2 + 1
=

lim
n→∞

ln n2

n2+1
1
n

= lim
n→∞

2 lnn− ln (n2 + 1)
1
n

. The second equality shows this is an indeterminate

form of type
0

0
, so using L’Hopital’s rule on the third equality gives lim

n→∞

2 lnn− ln (n2 + 1)
1
n

L’H
=

lim
n→∞

2
n −

2n
n2+1

− 1
n2

= lim
n→∞

− 2n2

n(n2 + 1)
= 0. This then gives L = 1, so that lim

n→∞
(−1)n

n2n

(1 + n2)n

doesn’t exist (it oscillates between 1 and −1). Therefore, the series diverges by the diver-
gence test.

5. Here we use the ratio test. With an =
(n!)2

(2n)!
, we have

an+1

an
=

((n + 1)!)2

(2n + 2)!
· (2n)!

(n!)2
=(

(n + 1)!

n!

)2

· (2n)!

(2n + 2)!
=

(n + 1)2

(2n + 1)(2n + 2)
. It’s then easy to check that lim

n→∞

an+1

an
=

1

4
< 1,

so by the ratio test,

∞∑
n=0

(n!)2

(2n)!
converges .
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6. As n → ∞, 1 + 1/n → 1, so we expect n1+1/n ≈ n, and therefore that

∞∑
n=1

1

n1+1/n
and

∞∑
n=1

1

n
have the same behavior, and the latter we know is the divergent harmonic series. With

an =
1

n1+1/n
and bn =

1

n
, we have lim

n→∞

an
bn

= lim
n→∞

n

n1+1/n
= lim

n→∞

1

n1/n
= 1. Therefore by

the limit comparison test,

∞∑
n=1

1

n1+1/n
diverges.

For the alternating series, one can compute that with f(x) = frac1x1+1/x we have f ′(x) =
(ln(x)−1−x)x−1/x−3 < 0 for x > 1, so an is eventually decreasing. It’s clear that an → 0, so by

the alternating series test,

∞∑
n=1

1

n1+1/n
converges, and so the series converges conditionally .

7. Following the hint,

(
1−

√
1− 1

n

)(
1 +

√
1− 1

n

)
=

1

n
, so that 1−

√
1− 1

n
=

1
n

1 +
√

1− 1
n

.

As 1 +

√
1− 1

n
≤ 2, we find 1 −

√
1− 1

n
≥

1
n

2
=

1

2n
. Since

∞∑
n=1

1

2n
diverges, by a direct

comparison we see that

∞∑
n=1

(
1−

√
1− 1

n

)
also diverges .

8. Firstly, write logn(n!) as
ln(n!)

ln(n)
using the change of base formula, so we can rewrite the series

as

∞∑
n=2

ln(n!)

n3 lnn
. Since n! ≤ nn for all n,

∞∑
n=2

ln(n!)

n3 lnn
≤
∞∑

n=2

ln(nn)

n3 lnn
=

∞∑
n=2

n ln(n)

n3 ln(n)
=

∞∑
n=2

1

n2
.

The latter is a convergent p-series, so by direct comparison,

∞∑
n=2

ln(n!)

n3 lnn
converges .

9. Firstly, recall that | cos(n)| ≤ 1 for all n. Taking absolute values,

∞∑
n=0

| cos(n)|
1 + ln(n) + n2 + 2n + n!

≤

∞∑
n=0

1

n!
. The latter sum is easily seen to converge by the ratio test, so

∞∑
n=0

cos(n)

1 + ln(n) + n2 + 2n + n!

converges absolutely .

10. The idea is to analyze the function ln(1 + x) for x ≈ 0. Taking a tangent line at x = 0,

we see that ln(1 + x) ≈ x. Since
1

n2
→ 0 as n → ∞, we see that ln

(
1 +

1

n2

)
≈ 1

n2
, so

we expect that

∞∑
n=1

ln

(
1 +

1

n2

)
and

∞∑
n=1

1

n2
should have the same behavior. The latter is

a convergent p-series, so we expect our original series converges. To prove this, we’ll use

the limit comparison test. Set an = ln

(
1 +

1

n2

)
and bn =

1

n2
. Then

an
bn

=
ln(1 + 1

n2 )
1
n2

,

and lim
n→∞

an
bn

= lim
n→∞

ln(1 + 1
n2 )

1
n2

= lim
u→0

ln(1 + u)

u
using the substitution u =

1

n2
. We see

using L’Hopital’s rule that lim
u→0

ln(1 + u)

u
= 1, so by the limit comparison test, we see that

∞∑
n=1

ln

(
1 +

1

n2

)
converges .

11. Set an =
n!

(n + 1)n

(
19

7

)n

. Then
an+1

an
=

(n+1)!
(n+2)n+1

(
19
7

)n+1

n!
(n+1)n

(
19
7

)n =
19

7

(n + 1)(n + 1)n

(n + 2)n+1
=

19

7

(
n + 1

n + 2

)n

.

Taking limits, lim
n→∞

an+1

an
= lim

n→∞

19

7

(
n + 1

n + 2

)n

. To evaluate this limit, set u = n + 2, so this
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becomes lim
u→∞

19

7

(
u− 1

u

)u−2

=
19

7
lim
u→∞

(
1− 1

u

)u

·
(

1− 1

u

)−2
=

19

7e
< 1. By the ratio test,

∞∑
n=0

n!

(n + 1)n

(
19

7

)n

converges .

12. Use the root test: set an = n

√
n

en3 =
n1/n

en2 . It’s an easy limit computation to see that

n1/n → 1 as n→∞, so that lim
n→∞

an = 0. Therefore by the root test,

∞∑
n=1

n

en3 converges .

13. Since sin (
√
n2 + n− n) is bounded by 1, we’ll try replacing the numerator with that. Use a

limit comparison test with an =
sin(
√
n2 + n− n)

n
and bn =

1

n
. Then

an
bn

= sin(
√
n2 + n−n),

so we need to see how this behaves as n → ∞. We use the trick of multiplying and dividing

by the conjugate expression from earlier. Notice that (
√
n2 + n − n)(

√
n2 + n + n) = n,

so
√
n2 + n − n =

n√
n2 + n + n

. This gives sin(
√

n2 + n − n) = sin

(
n√

n2 + n + n

)
.

One can check with their favorite limit technique that lim
n→∞

n√
n2 + n + n

=
1

2
, so that

lim
n→∞

an
bn

= lim
n→∞

sin(
√
n2 + n − n) = sin

(
1

2

)
. As

∞∑
n=1

1

n
diverges, by the limit compari-

son test

∞∑
n=1

sin(
√
n2 + n− n)

n
diverges .

14. We can use some algebra to rewrite the sum as
3

8

∞∑
n=1

(−1)n2n32n

53n
=

3

8

∞∑
n=1

(
−18

125

)n

=
3

8
·

−18

143
=
−27

572
using the formula for the sum of a geometric series.

15. Notice that | sin(n+ln(n))| ≤ 1, so we will test for absolute convergence. We have

∞∑
n=1

n2| sin(n + ln(n))|
n4 + 4n

≤

∞∑
n=1

n2

n4 + 4n
≤
∞∑

n=1

n2

n4
=

∞∑
n=1

1

n2
. The latter sum is a convergent p-series with p = 2, so by

the comparison test,

∞∑
n=1

n2 sin(n + ln(n))

n4 + 4n
converges absolutely .

16. As n → ∞ we notice that
n10 + 11n

n11 + 10n
≈ 11n

10n
=

(
11

10

)n

. Since

∞∑
n=1

(
11

10

)n

is a divergent

geometric series, we expect our series diverges as well. Use the limit comparison test with an =
n10 + 11n

n11 + 10n
and bn =

(
11

10

)n

, then
an
bn

=
10nn10 + 110n

11nn11 + 110n
, and dividing through numerator and

denominator by 110n says
an
bn

=
n10

11n + 1
n11

10n + 1
. Then lim

n→∞

an
bn

= 1, so by the limit comparison

test, we see that

∞∑
n=1

n10 + 11n

n11 + 10n
diverges .

17. Since en > n, we have e−n <
1

n
, so that 1− e−n > 1− 1

n
. This says (1− e−n)n > (1− 1

n
)n.

Taking n → ∞, the right hand side tends to
1

e
, so that lim

n→∞
(1 − e−n)n ≥ 1

e
. In particular,

since lim
n→∞

(1− e−n)n 6= 0, by the divergence test, we find that

∞∑
n=1

(1− e−n)n diverges .

18. Set an = f(n) = sin

(
1

n

)
. Then f ′(n) = − cos

(
1

n

)
1

n2
< 0 for all n > 0, so that an is

monotonically decreasing. It’s clear that an ≥ 0 and lim
n→∞

an = 0, so by the alternating series
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test,

∞∑
n=1

(−1)n sin

(
1

n

)
converges. To check for conditional convergence, we look at the series

∞∑
n=1

sin

(
1

n

)
. Since sin(x) ≈ x when x ≈ 0, this says sin

(
1

n

)
≈ 1

n
, so

∞∑
n=1

sin

(
1

n

)
≈
∞∑

n=1

1

n
.

The latter series is the divergent harmonic series, so we think our series should diverge too. Use

the limit comparison test with an = sin

(
1

n

)
and bn =

1

n
. Then lim

n→∞

an
bn

= lim
n→∞

sin
(
1
n

)
1
n

=

lim
u→0

sin(u)

u
= 1 where we have used the substitution u =

1

n
. Therefore by the limit comparison

test,

∞∑
n=1

sin

(
1

n

)
diverges, so our original series converges conditionally .

19. Since ln(n) ≤ na eventually for any a > 0, with a = 1/3 we see that ln(n) ≤ n1/3 for all n ≥ N

for some N , so cubing gives ln(n)3 ≤ n for n ≥ N . This then says

∞∑
n=N

1

ln(n)3
≥

∞∑
n=N

1

n
.

The latter series is the divergent harmonic series, so by a direct comparison test,

∞∑
n=2

1

ln(n)3

diverges .

20. Use the root test with an =
1

ln(n)n
. We have lim

n→∞
n
√
|an| = lim

n→∞

1

ln(n)
= 0, so the series

converges .

21. Notice that lnn > 2 for n > e2. Then nlnn > n2 and therefore
1

nlnn
<

1

n2
for n ≥ 9. Since

∞∑
n=1

1

n2
is a convergent p-series, by a direct comparison this says

∞∑
n=1

1

nlnn
converges .

22. Set an =
√
n + 1 −

√
n. Then using the identity a − b =

a2 − b2

a + b
with a =

√
n + 1 and

b =
√
n, we see we can write an =

1√
n + 1 +

√
n

. Obviously, lim
n→∞

an = 0, and
an+1

an
=

√
n + 1 +

√
n√

n + 2 +
√
n + 1

< 1, which says an is monotonically decreasing. By the alternating series

test, we find that

∞∑
n=1

(−1)n(
√
n + 1 −

√
n) converges. We now need to test for conditional

convergence. Taking an absolute value, we study the series
∑
n=1

1√
n + 1 +

√
n

. As n → ∞,

√
n + 1 ≈

√
n, so we expect the series looks like

∞∑
n=1

1

2
√
n

, which we see is a divergent p-series

with p = 1/2. Setting bn =
1

2
√
n

, we see
an
bn

=
2
√
n

√
n +
√
n + 1

, and it’s easy to check that

lim
n→∞

an
bn

= 1. Therefore by the limit comparison test,
∑
n=1

1√
n + 1 +

√
n

diverges so that

∞∑
n=1

(−1)n(
√
n + 1−

√
n) converges conditionally .

23. We use the ratio test. Set an =
n!

en2 . Then an+1 =
(n + 1)!

en2+2n+1
, so

an+1

an
=

n + 1

e2n+1
. It’s then

clear using L’Hopital’s rule that lim
n→∞

an+1

an
= 0, so by the ratio test, the series converges .

24. As n → ∞, 2n + n2 − ln(n) ≈ 2n, so
2n + n2 − ln(n)

n!
≈ 2n

n!
. Since

∞∑
n=1

2n

n!
is easily seen to

converge with the ratio test, we expect our original series converges as well. Using the limit

comparison test with an =
2n + n2 − ln(n)

n!
and bn =

2n

n!
, we have

an
bn

=
2n + n2 − ln(n)

2n
=
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1 +
n2

2n
− ln(n)

2n
, so as n → ∞, we see that

an
bn
→ 1. By the limit comparison test, this says

∞∑
n=1

2n + n2 − ln(n)

n!
and

∞∑
n=1

2n

n!
have the same behavior, so our series converges .

25. We use the root test since there are n-th powers floating around instead of the alternating
series test. Set an = (−1)n( n

√
n − 1)n, so that n

√
|an| = |an|1/n = n

√
n − 1 = n1/n − 1. As

n→∞, it’s a standard exercise in taking logarithms to see that n1/n → 1, so n1/n − 1→ 0.

By the root test, the series converges absolutely .
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