
Improper Integrals Practice
Tim Smits

Starred problems are challenges.

Determine if the following integrals converge, and if so, evaluate them:

1.

∫ 4

0

1√
4− x

dx

2.

∫ π/2

0

tanx dx

3.

∫ ∞
0

x

(1 + x2)2
dx

4.

∫ ∞
−∞

xe−x
2

dx

5.

∫ 1

−1

1

x1/3
dx

6.

∫ ∞
4

1

(x− 2)(x− 3)
dx

Determine the convergence or divergence of the following integrals:

7.

∫ ∞
1

e−(x+x
−1) dx

8.

∫ ∞
−∞

e−x
2

dx

9.

∫ 1

0

1

x4 +
√
x
dx

10.

∫ 1/2

0

1

x2 ln(x)
dx

11.

∫ ∞
0

1

x3/2(x+ 1)
dx

12.

∫ 1

0

ex

x2
dx

13.

∫ ∞
1

1

x4 + ex
dx

14.

∫ 1

0

1

xex + x2
dx

15.*

∫ ∞
1

sin(x)

x
dx (Hint: integrate by parts.)

16.*

∫ 1

0

arctan(x)

ex − 1
dx (Hint: use first order Taylor polynomials centered at 0 of the numerator and

denominator to estimate the integrand.)
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Solutions

1. The integrand has a singularity at x = 4, so it is indeed improper. Write

∫ 4

0

1√
4− x

dx =

lim
R→4−

∫ R

0

1√
4− x

dx. This integral can be done with the substitution u = 4−x and du = − dx.

As an indefinite integral,

∫
1√

4− x
dx = −

∫
u−1/2 du = −2u1/2 + C = −2(4 − x)1/2 + C.

The integral becomes lim
R→4−

−2(4− x)1/2
∣∣∣∣R
0

= lim
R→4−

−2(4−R)1/2 + 4 = 4 .

2. The integrand has a singularity at x = π/2, so it is improper. Write this as lim
R→π/2−

∫ R

0

tanx dx.

We know that

∫
tanx dx = − ln | cosx|+C, so this becomes lim

R→π/2−
− ln | cosx|

∣∣∣∣R
0

= lim
R→π/2−

− ln | cosR| =

∞, so that the integral diverges .

3. The integral has an infinite bound, so it’s improper. Write

∫ ∞
0

x

(1 + x2)2
dx as lim

R→∞

∫ R

0

x

(1 + x2)2
dx.

The indefinite integral

∫
x

(1 + x2)2
dx can be done with the substitution u = 1 + x2 and

du = 2x dx. This becomes
1

2

∫
1

u2
du = − 1

2u
+ C = − 1

2(1 + x2)
+ C. We then get

lim
R→∞

− 1

2(1 + x2)

∣∣∣∣R
0

= lim
R→∞

− 1

2(1 +R2)
+

1

2
=

1

2
.

4. This is a doubly infinite integral, so we need to split it up as

∫ 0

−∞
xe−x

2

dx +

∫ ∞
0

xe−x
2

dx.

Both of these are improper, so write these as lim
R→−∞

∫ 0

R

xe−x
2

dx + lim
B→∞

∫ B

0

xe−x
2

dx. The

indefinite integral

∫
xe−x

2

dx = −e
−x2

2
+ C after the substitution u = x2 and du = 2x dx.

The first improper integral becomes lim
R→−∞

−e
−x2

2

∣∣∣∣0
R

= −1

2
+
e−R

2

2
= −1

2
. The other integral

becomes lim
B→∞

−e
−x2

2

∣∣∣∣B
0

= −e
−B2

2
+

1

2
=

1

2
. Adding these together gives

∫ ∞
−∞

xe−x
2

dx = 0 .

5. The integrand has a singularity at x = 0, so we need to split it up into

∫ 0

−1

1

x1/3
dx +∫ 1

0

1

x1/3
dx. We have

∫
1

x1/3
dx =

3

2
x2/3 + C by the power rule. This gives

∫ 0

−1

1

x1/3
dx =

lim
R→0−

∫ R

−1

1

x1/3
dx = lim

R→0−

3

2
x2/3

∣∣∣∣R
−1

= lim
R→0−

3

2
R2/3 − 3

2
= −3

2
. The other integral similarly

can be computed as
3

2
, so adding them together gives 0 .

6. The integral has no singularity, but it has an infinite limit so it is improper. Write

∫ ∞
4

1

(x− 2)(x− 3)
dx =

lim
R→∞

∫ R

4

1

(x− 2)(x− 3)
dx. To calculate the indefinite integral

∫
1

(x− 2)(x− 3)
dx, we use

partial fractions. Write
1

(x− 2)(x− 3)
=

A

x− 2
+

B

x− 3
. Clearing denominators gives

1 = A(x− 3) +B(x− 2). Plugging in x = 2 and x = 3 respectively gives A = −1 and B = 1,

so
1

(x− 2)(x− 3)
=
−1

x− 2
+

1

x− 3
. This gives

∫
1

(x− 2)(x− 3)
dx =

∫
−1

x− 2
+

1

x− 3
dx =

− ln |x−2|+ln |x−3|+C. The improper integral then becomes lim
R→∞

− ln |x−2|+ln |x−3|
∣∣∣∣R
4

=
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lim
R→∞

ln
∣∣x− 3

x− 2

∣∣∣∣∣∣R
4

= lim
R→∞

ln
∣∣R− 3

R− 2

∣∣+ln 2. As lim
R→∞

R− 3

R− 2
= 1, this gives lim

R→∞
ln
∣∣R− 3

R− 2

∣∣ = 0,

so

∫ ∞
4

1

(x− 2)(x− 3)
dx = ln 2 .

7. Note that x+ x−1 = x+
1

x
> x, and because the exponential function is increasing, this says

e(x+x
−1) > ex. Then e−(x+x

−1) < e−x, so

∫ ∞
1

e−(x+x
−1) dx <

∫ ∞
1

e−x dx. One can check

that

∫ ∞
1

e−x dx =
1

e
so by the comparison test,

∫ ∞
1

e−(x+x
−1) dx converges .

8. Since e−x
2

is an even function, if

∫ ∞
0

e−x
2

dx exists, then so does

∫ 0

−∞
e−x

2

dx and they have

the same value, so we will just prove that

∫ ∞
0

e−x
2

dx exists. Since ex ≤ ex
2

for all x ≥ 1, this

says e−x
2

≤ e−x for x ≥ 1. Write

∫ ∞
0

e−x
2

dx =

∫ 1

0

e−x
2

dx +

∫ ∞
1

e−x
2

dx. The above says∫ ∞
1

e−x
2

dx ≤
∫ ∞
1

e−x dx, and the latter integral converges to
1

e
. The integral

∫ 1

0

e−x
2

dx is

finite because e−x
2

is continuous, and therefore bounded on this interval. By the comparison

test,

∫ ∞
0

e−x
2

dx therefore converges, and thus

∫ ∞
−∞

e−x
2

dx converges .

9. There is a singularity at x = 0 in the integrand, so we need to study the behavior of
1

x4 +
√
x

near there. Around x = 0, the term that makes the most contribution to x4 +
√
x is

√
x,

so we expect that

∫ 1

0

1

x4 +
√
x
dx and

∫ 1

0

1√
x
dx have the same behavior. One can check

that

∫ 1

0

1√
x
dx = 2, so let’s try and get this as an upper bound. We have x4 +

√
x >

√
x,

so that
1

x4 +
√
x
<

1√
x

. This says

∫ 1

0

1

x4 +
√
x
dx <

∫ 1

0

1√
x
dx, so by the comparison test,∫ 1

0

1

x4 +
√
x
dx converges .

10. The integrand is not defined at x = 0. In fact, there’s a question of whether or not the
integral is even infinite at x = 0! Determining this is a basic L’Hopital’s rule computation:

lim
x→0

1

x2 ln(x)
= −∞, so we have an infinite discontinuity at x = 0 and have to determine how

the integrand blows up. As x → 0, the dominant term in the denominator has to be ln(x),
because it’s what causes the blowup in the first place. We’d then ideally like to compare

with

∫ 1/2

0

1

ln(x)
dx, but this isn’t much of an improvement, because we can’t integrate that

function directly. The strategy then, is to get rid of the logarithm to compare with something
easier: since logarithms eventually grow slower than any power of x, note that ln(x) < x for

all x > 0, which means that x2 ln(x) < x3 for all x > 0. Inverting says that
1

x2 ln(x)
>

1

x3
for

x > 0, and since

∫ 1/2

0

1

x3
dx diverges, the comparison test then says that

∫ 1/2

0

1

x2 ln(x)
dx

also diverges .

11. The integrand has both a singularity at x = 0 and an infinite limit. We will split it up into a

sum to analyze it better. Write

∫ ∞
0

1

x3/2(x+ 1)
dx =

∫ 1

0

1

x3/2(x+ 1)
dx+

∫ ∞
1

1

x3/2(x+ 1)
dx.

In the first integral, near x = 0, x3/2(x+ 1) = x5/2 + x3/2 looks like x3/2, so we expect that∫ 1

0

1

x3/2(x+ 1)
dx and

∫ 1

0

1

x3/2
dx have the same behavior. We know

∫ 1

0

1

x3/2
dx diverges,

so let’s try and use this as a lower bound. We have x3/2(x+ 1) < 2x3/2, so indeed this gives
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1

x3/2(x+ 1)
>

2

x3/2
. Integrating both sides then shows that

∫ 1

0

1

x3/2(x+ 1)
dx diverges. For

the second piece

∫ ∞
1

1

x3/2(x+ 1)
dx, as x goes to infinity, x3/2(x+ 1) = x5/2 + x3/2 behaves

like x5/2, so we expect that

∫ ∞
1

1

x3/2(x+ 1)
dx and

∫ ∞
1

1

x5/2
dx have the same behavior. The

latter integral converges, so we try to use it as an upper bound. We see x3/2(x + 1) > x5/2,

so that
1

x3/2(x+ 1)
<

1

x5/2
. This gives

∫ ∞
1

1

x3/2(x+ 1)
dx <

∫ ∞
1

1

x5/2
dx, so that by the

comparison test,

∫ ∞
1

1

x3/2(x+ 1)
dx converges. Since the first piece diverges and the second

piece converges, we find that

∫ ∞
0

1

x3/2(x+ 1)
dx diverges .

12. There is a singularity at x = 0, so we need to analyze the integrand there. On the interval [0, 1]

the function ex is bounded and therefore makes little contribution, so we expect

∫ 1

0

ex

x2
dx and∫ 1

0

1

x2
dx to have the same behavior. As 1 ≤ ex for 0 ≤ x ≤ 1, this says

ex

x2
≥ 1

x2
. Integrating

both sides gives

∫ 1

0

1

x2
dx ≤

∫ 1

0

ex

x2
dx. Since

∫ 1

0

1

x2
dx diverges, by the comparison test we

must have that

∫ 1

0

ex

x2
dx diverges .

13. As x goes to infinity, because ex grows faster than x4, we see ex has the biggest contribution

in x4 + ex. So we expect that

∫ ∞
1

1

x4 + ex
dx and

∫ ∞
1

1

ex
dx have the same behavior. We

have x4 + ex > ex, so that
1

x4 + ex
<

1

ex
. Integrating gives

∫ ∞
1

1

x4 + ex
dx <

∫ ∞
1

1

ex
dx,

and one can check that

∫ ∞
1

1

ex
dx does in fact converge. By the comparison test, this says∫ ∞

1

1

x4 + ex
dx converges .

14. There is a singularity at x = 0, in the integrand, so we need to analyze the behavior of
1

xex + x2
near there. Note that ex is bounded on [0, 1] so it does not contribute much to the

term xex + x2. In fact, ex ≈ 1 near 0, so xex + x2 ≈ x + x2. How does x + x2 behave near
x = 0? The term with the largest contribution is x, so x + x2 ≈ x and we then expect that∫ 1

0

1

xex + x2
dx and

∫ 1

0

1

x
dx have the same behavior. Since

∫ 1

0

1

x
dx diverges, we try to use

this as a lower bound. For 0 ≤ x ≤ 1, we have ex ≤ e, so that xex + x2 ≤ xe+ x2. As x2 ≤ x
on this interval as well, xex + x2 ≤ xe+ x = x(e+ 1). This says xex + x2 ≤ x(e+ 1), so that

1

xex + x2
≥ 1

x(e+ 1)
. Integrating this inequality says

1

e+ 1

∫ 1

0

1

x
dx ≤

∫ 1

0

1

xex + x2
dx, so

by the comparison test,

∫ 1

0

1

xex + x2
dx diverges .

15. Write

∫ ∞
1

sin(x)

x
dx = lim

R→∞

∫ R

1

sin(x)

x
dx. Using integration by parts with u =

1

x
and dv =

sin(x), we find

∫ R

1

sin(x)

x
dx = −cos(x)

x

∣∣∣∣R
1

−
∫ R

1

cos(x)

x2
dx = cos(1)− cos(R)

R
−
∫ R

1

cos(x)

x2
dx.

As R→∞,
cos(R)

R
→ 0 by the squeeze theorem, and lim

R→∞

∫ R

1

cos(x)

x2
dx =

∫ ∞
1

cos(x)

x2
dx ≤∫ ∞

1

| cos(x)|
x2

dx ≤
∫ ∞
1

1

x2
dx <∞. This says

∫ ∞
1

sin(x)

x
dx = lim

R→∞

∫ R

1

sin(x)

x
dx = cos(1)−∫ ∞

1

cos(x)

x2
dx is finite, so the integral converges .
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16. Near x = 0, ex ≈ 1 + x, so ex − 1 ≈ x, and similarly we have arctan(x) ≈ x, so near x = 0,
arctan(x)

ex − 1
≈ 1, and therefore we expect the integral converges. To apply the comparison test,

we will show that
arctan(x)

ex − 1
≤ 1 for all x. To see this, the trick is to instead look at derivatives:

1

x2 + 1
≤ 1 ≤ ex for all x, so integrating yields arctan(x) =

∫ x

0

1

t2 + 1
dt ≤

∫ x

0

et dt = ex− 1,

i.e.
arctan(x)

ex − 1
≤ 1. This then gives

∫ 1

0

arctan(x)

ex − 1
dx ≤

∫ 1

0

1 dx = 1, so by the comparison

test,

∫ 1

0

arctan(x)

ex − 1
dx converges .
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