Improper Integrals Practice
Tim Smits

Starred problems are challenges.

Determine if the following integrals converge, and if so, evaluate them:
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Determine the convergence or divergence of the following integrals:
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1. The integrand has a singularity at z = 4, so it is indeed improper. Write /
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dz. This integral can be done with the substitution u = 4—x and du = — dz.
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As an indefinite integral, / —/u_1/2 du=—20'"?+C =204 —2)"? +C.
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2. The integrand has a singularity at x = /2, so it is improper. Write this as n lin/l tanx dx.
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3. The integral has an infinite bound, so it’s improper. Write /0 m dx as Rli_r)noo | m dx.
The indefinite integral / ﬁ dz can be done with the substitution v = 1 + 2 and
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du = 2xdx. This becomes i/ﬁdu = 53, + C = —m + C. We then get
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4. This is a doubly infinite integral, so we need to split it up as /
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Both of these are improper, so write these as _lim ze=® dz + lim ze=% dz. The
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indefinite integral /:r:(fgﬁ2 de = 5 + C after the substitution u = 22 and du = 2z dz.

0 _R?

71;2

1 1
The first improper integral becomes lim — ¢ =—=+4 € = ——. The other integral
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0
1
5. The integrand has a singularity at * = 0, so we need to split it up into / %dl‘ +
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/0 i3 dx. We have /m dr = §m + C by the power rule. This gives /_1 RV dr =
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6. The integral has no singularity, but it has an infinite limit so it is improper. Write / (2— dr =
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lim —————dx. To calculate the indefinite integral / dx, we use
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partial fractions. Write @ =2 —3) = T3 + 3 Clearing denominators gives
1= A(xz —3)+ B(z —2). Plugging in = 2 and = = 3 respectively gives A = —1 and B = 1,
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. There is a singularity at x = 0 in the integrand, so we need to study the behavior of
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Note that z + 271 = 2+ — > x, and because the exponential function is increasing, this says
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. Since e~* is an even function, if / e~ " dx exists, then so does / e~ % dx and they have
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the same value, so we will just prove that / 6_12 dx exists. Since e® < e””2 for all z > 1, this
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says e” ¥ < e ¥ for x > 1. Write e ¥ dx = e dr + e~ * dx. The above says
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/ e~ da < / e~ dx, and the latter integral converges to —. The integral / e~ dz is
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finite because e is continuous, and therefore bounded on this interval. By the comparison
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test, / e~ dz therefore converges, and thus / e~ dx .
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near there. Around xz = 0, the term that makes the most contribution to z* + /z is V/z,

1
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so we expect that dr and dx have the same behavior. One can check
P /o i+ \/z / NG

1
1
that / 7 dz = 2, so let’s try and get this as an upper bound. We have z* + /z > /z,
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The integrand is not defined at = 0. In fact, there’s a question of whether or not the
integral is even infinite at * = 0! Determining this is a basic L’Hopital’s rule computation:

lim ——— = —o0, so we have an infinite discontinuity at = 0 and have to determine how
=0 22 In(x)

the integrand blows up. As z — 0, the dominant term in the denominator has to be In(z),
because it’s what causes the blowup in the first place. We’d then ideally like to compare
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with / m dx, but this isn’t much of an improvement, because we can’t integrate that
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function directly. The strategy then, is to get rid of the logarithm to compare with something

easier: since logarithms eventually grow slower than any power of z, note that In(z) < x for

1
all > 0, which means that 2> In(z) < 22 for all > 0. Inverting says that ———— > — for
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z > 0, and since / — dx diverges, the comparison test then says that / ———dx
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The integrand has both a singularity at z = 0 and an infinite limit. We will split it up into a

) ] o] 1 1 00 1
sum to analyze it better. erte/o m dx = /0 m dw—i—/l m dx.

In the first integral, near z = 0, 2%/2(z 4 1) = 2%/2 + 23/2 looks like 2*/2, so we expect that
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/ —————dx and / ——— dx have the same behavior. We know / dx diverges,
0 x3/2($+1) 0 x3/2 0

1
23/2
so let’s try and use this as a lower bound. We have z°/2 (x+1) < 24%/2 so indeed this gives
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like 2%/ 2 so we expect that / ——dx and / —— dx have the same behavior. The
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latter integral converges, so we try to use it as an upper bound. We see 23/? (z+1) > z°/2,
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so that x3/2 (;1; n 1) < x5/2 . This gives \/1 m dz < /1 W d:C, so that by the
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There is a singularity at © = 0, so we need to analyze the integrand there. On the interval [0, 1]
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the function e® is bounded and therefore makes little contribution, so we expect / — dzr and
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/ —5 dz to have the same behavior. As 1 <e” for 0 <z <1, this says — > —. Integrating
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both sides gives / —dr < / — dx. Since / — da diverges, by the comparison test we
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As x goes to infinity, because e grows faster than x
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There is a singularity at x = 0, in the integrand, so we need to analyze the behavior of

P near there. Note that e” is bounded on [0,1] so it does not contribute much to the
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term ze®” 4+ 22. In fact, ¢ ~ 1 near 0, so ze® + 2> ~ = + 2>. How does x + 22 behave near
2 = 0?7 The term with the largest contribution is x, so « + 2 ~ z and we then expect that
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this as a lower bound. For 0 < x < 1, we have ¢” < e, so that ze® + 2 <ze+z? Asz’ <=z
on this interval as well, ze” 4+ 2® < ze +x = x(e + 1). This says ze* + 2> < (e + 1), so that
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/ ———— dx and / — dz have the same behavior. Since / — dx diverges, we try to use
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Write / S0(2) 4o — Jim / SInl@) ;. Using integration by parts with u = — and dv —
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sin(x), we find / sin(x) dx = _cosle) —/ cos(zac) dx = cos(1)— cos(R) —/ cosgx) dz.
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As R — oo, cos(F) — 0 by the squeeze theorem, and lim cosgx) dx = / COS(;U) dr <
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16. Near z = 0, e &~ 1 + x, so e* — 1 &~ x, and similarly we have arctan(z) = x, so near x = 0,
arctan(x . .
17() =~ 1, and therefore we expect the integral converges. To apply the comparison test,
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we will show that < 1for all . To see this, the trick is to instead look at derivatives:
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