Improper Integrals Practice Tim Smits

Starred problems are challenges.

Determine if the following integrals converge, and if so, evaluate them:

1.
$$\int_{0}^{4} \frac{1}{\sqrt{4-x}} dx$$

2.
$$\int_{0}^{\pi/2} \tan x \, dx$$

3.
$$\int_{0}^{\infty} \frac{x}{(1+x^{2})^{2}} \, dx$$

4.
$$\int_{-\infty}^{\infty} x e^{-x^{2}} \, dx$$

5.
$$\int_{-1}^{1} \frac{1}{x^{1/3}} \, dx$$

6.
$$\int_{4}^{\infty} \frac{1}{(x-2)(x-3)} \, dx$$

Determine the convergence or divergence of the following integrals:

$$\begin{aligned} 7. & \int_{1}^{\infty} e^{-(x+x^{-1})} dx \\ 8. & \int_{-\infty}^{\infty} e^{-x^{2}} dx \\ 9. & \int_{0}^{1} \frac{1}{x^{4} + \sqrt{x}} dx \\ 10. & \int_{0}^{1/2} \frac{1}{x^{2} \ln(x)} dx \\ 11. & \int_{0}^{\infty} \frac{1}{x^{3/2}(x+1)} dx \\ 12. & \int_{0}^{1} \frac{e^{x}}{x^{2}} dx \\ 13. & \int_{1}^{\infty} \frac{1}{x^{4} + e^{x}} dx \\ 14. & \int_{0}^{1} \frac{1}{xe^{x} + x^{2}} dx \\ 15.* & \int_{1}^{\infty} \frac{\sin(x)}{x} dx \text{ (Hint: integrate by parts.)} \\ 16.* & \int_{0}^{1} \frac{\arctan(x)}{e^{x} - 1} dx \text{ (Hint: use first order Taylor polynomials centered at 0 of the numerator and denominator to estimate the integrand.)} \end{aligned}$$

Solutions

- 1. The integrand has a singularity at x = 4, so it is indeed improper. Write $\int_0^4 \frac{1}{\sqrt{4-x}} dx = \lim_{R \to 4^-} \int_0^R \frac{1}{\sqrt{4-x}} dx$. This integral can be done with the substitution u = 4-x and du = -dx. As an indefinite integral, $\int \frac{1}{\sqrt{4-x}} dx = -\int u^{-1/2} du = -2u^{1/2} + C = -2(4-x)^{1/2} + C$. The integral becomes $\lim_{R \to 4^-} -2(4-x)^{1/2} \Big|_0^R = \lim_{R \to 4^-} -2(4-R)^{1/2} + 4 = 4$.
- 2. The integrand has a singularity at $x = \pi/2$, so it is improper. Write this as $\lim_{R \to \pi/2^-} \int_0^R \tan x \, dx$. We know that $\int \tan x \, dx = -\ln|\cos x| + C$, so this becomes $\lim_{R \to \pi/2^-} -\ln|\cos x| \Big|_0^R = \lim_{R \to \pi/2^-} -\ln|\cos R| = \infty$, so that the integral diverges.
- 3. The integral has an infinite bound, so it's improper. Write $\int_0^\infty \frac{x}{(1+x^2)^2} dx$ as $\lim_{R \to \infty} \int_0^R \frac{x}{(1+x^2)^2} dx$. The indefinite integral $\int \frac{x}{(1+x^2)^2} dx$ can be done with the substitution $u = 1 + x^2$ and $du = 2x \, dx$. This becomes $\frac{1}{2} \int \frac{1}{u^2} du = -\frac{1}{2u} + C = -\frac{1}{2(1+x^2)} + C$. We then get $\lim_{R \to \infty} -\frac{1}{2(1+x^2)} \Big|_0^R = \lim_{R \to \infty} -\frac{1}{2(1+R^2)} + \frac{1}{2} = \begin{bmatrix} \frac{1}{2} \end{bmatrix}$.
- 4. This is a doubly infinite integral, so we need to split it up as $\int_{-\infty}^{0} xe^{-x^2} dx + \int_{0}^{\infty} xe^{-x^2} dx$. Both of these are improper, so write these as $\lim_{R \to -\infty} \int_{R}^{0} xe^{-x^2} dx + \lim_{B \to \infty} \int_{0}^{B} xe^{-x^2} dx$. The indefinite integral $\int xe^{-x^2} dx = -\frac{e^{-x^2}}{2} + C$ after the substitution $u = x^2$ and du = 2x dx. The first improper integral becomes $\lim_{R \to -\infty} -\frac{e^{-x^2}}{2}\Big|_{R}^{0} = -\frac{1}{2} + \frac{e^{-R^2}}{2} = -\frac{1}{2}$. The other integral becomes $\lim_{B \to \infty} -\frac{e^{-x^2}}{2}\Big|_{0}^{B} = -\frac{e^{-B^2}}{2} + \frac{1}{2} = \frac{1}{2}$. Adding these together gives $\int_{-\infty}^{\infty} xe^{-x^2} dx = [0]$.
- 5. The integrand has a singularity at x = 0, so we need to split it up into $\int_{-1}^{0} \frac{1}{x^{1/3}} dx + \int_{0}^{1} \frac{1}{x^{1/3}} dx$. We have $\int \frac{1}{x^{1/3}} dx = \frac{3}{2}x^{2/3} + C$ by the power rule. This gives $\int_{-1}^{0} \frac{1}{x^{1/3}} dx = \lim_{R \to 0^{-}} \int_{-1}^{R} \frac{1}{x^{1/3}} dx = \lim_{R \to 0^{-}} \frac{3}{2}x^{2/3}\Big|_{-1}^{R} = \lim_{R \to 0^{-}} \frac{3}{2}R^{2/3} \frac{3}{2} = -\frac{3}{2}$. The other integral similarly can be computed as $\frac{3}{2}$, so adding them together gives $\boxed{0}$.
- 6. The integral has no singularity, but it has an infinite limit so it is improper. Write $\int_{4}^{\infty} \frac{1}{(x-2)(x-3)} dx = \lim_{R \to \infty} \int_{4}^{R} \frac{1}{(x-2)(x-3)} dx$. To calculate the indefinite integral $\int \frac{1}{(x-2)(x-3)} dx$, we use partial fractions. Write $\frac{1}{(x-2)(x-3)} = \frac{A}{x-2} + \frac{B}{x-3}$. Clearing denominators gives 1 = A(x-3) + B(x-2). Plugging in x = 2 and x = 3 respectively gives A = -1 and B = 1, so $\frac{1}{(x-2)(x-3)} = \frac{-1}{x-2} + \frac{1}{x-3}$. This gives $\int \frac{1}{(x-2)(x-3)} dx = \int \frac{-1}{x-2} + \frac{1}{x-3} dx = -\ln|x-2| + \ln|x-3| + C$. The improper integral then becomes $\lim_{R \to \infty} -\ln|x-2| + \ln|x-3| \Big|_{4}^{R} =$

$$\lim_{R \to \infty} \ln \left| \frac{x-3}{x-2} \right|_{4}^{R} = \lim_{R \to \infty} \ln \left| \frac{R-3}{R-2} \right| + \ln 2. \text{ As } \lim_{R \to \infty} \frac{R-3}{R-2} = 1, \text{ this gives } \lim_{R \to \infty} \ln \left| \frac{R-3}{R-2} \right| = 0,$$

so $\int_{4}^{\infty} \frac{1}{(x-2)(x-3)} \, dx = \boxed{\ln 2}.$

- 7. Note that $x + x^{-1} = x + \frac{1}{x} > x$, and because the exponential function is increasing, this says $e^{(x+x^{-1})} > e^x$. Then $e^{-(x+x^{-1})} < e^{-x}$, so $\int_1^\infty e^{-(x+x^{-1})} dx < \int_1^\infty e^{-x} dx$. One can check that $\int_1^\infty e^{-x} dx = \frac{1}{e}$ so by the comparison test, $\int_1^\infty e^{-(x+x^{-1})} dx$ converges.
- 8. Since e^{-x^2} is an even function, if $\int_0^\infty e^{-x^2} dx$ exists, then so does $\int_{-\infty}^0 e^{-x^2} dx$ and they have the same value, so we will just prove that $\int_0^\infty e^{-x^2} dx$ exists. Since $e^x \le e^{x^2}$ for all $x \ge 1$, this says $e^{-x^2} \le e^{-x}$ for $x \ge 1$. Write $\int_0^\infty e^{-x^2} dx = \int_0^1 e^{-x^2} dx + \int_1^\infty e^{-x^2} dx$. The above says $\int_1^\infty e^{-x^2} dx \le \int_1^\infty e^{-x} dx$, and the latter integral converges to $\frac{1}{e}$. The integral $\int_0^1 e^{-x^2} dx$ is finite because e^{-x^2} is continuous, and therefore bounded on this interval. By the comparison test, $\int_0^\infty e^{-x^2} dx$ therefore converges, and thus $\int_{-\infty}^\infty e^{-x^2} dx$ converges.
- 9. There is a singularity at x = 0 in the integrand, so we need to study the behavior of $\frac{1}{x^4 + \sqrt{x}}$ near there. Around x = 0, the term that makes the most contribution to $x^4 + \sqrt{x}$ is \sqrt{x} , so we expect that $\int_0^1 \frac{1}{x^4 + \sqrt{x}} dx$ and $\int_0^1 \frac{1}{\sqrt{x}} dx$ have the same behavior. One can check that $\int_0^1 \frac{1}{\sqrt{x}} dx = 2$, so let's try and get this as an upper bound. We have $x^4 + \sqrt{x} > \sqrt{x}$, so that $\frac{1}{x^4 + \sqrt{x}} < \frac{1}{\sqrt{x}}$. This says $\int_0^1 \frac{1}{x^4 + \sqrt{x}} dx < \int_0^1 \frac{1}{\sqrt{x}} dx$, so by the comparison test, $\int_0^1 \frac{1}{x^4 + \sqrt{x}} dx$ converges.
- 10. The integrand is not defined at x = 0. In fact, there's a question of whether or not the integral is even infinite at x = 0! Determining this is a basic L'Hopital's rule computation: $\lim_{x \to 0} \frac{1}{x^2 \ln(x)} = -\infty$, so we have an infinite discontinuity at x = 0 and have to determine how the integrand blows up. As $x \to 0$, the dominant term in the denominator has to be $\ln(x)$, because it's what causes the blowup in the first place. We'd then ideally like to compare with $\int_{0}^{1/2} \frac{1}{\ln(x)} dx$, but this isn't much of an improvement, because we can't integrate that function directly. The strategy then, is to get rid of the logarithm to compare with something easier: since logarithms eventually grow slower than any power of x, note that $\ln(x) < x$ for all x > 0, which means that $x^2 \ln(x) < x^3$ for all x > 0. Inverting says that $\frac{1}{x^2 \ln(x)} > \frac{1}{x^3}$ for x > 0, and since $\int_{0}^{1/2} \frac{1}{x^3} dx$ diverges, the comparison test then says that $\int_{0}^{1/2} \frac{1}{x^2 \ln(x)} dx$ also diverges.
- 11. The integrand has both a singularity at x = 0 and an infinite limit. We will split it up into a sum to analyze it better. Write $\int_0^\infty \frac{1}{x^{3/2}(x+1)} dx = \int_0^1 \frac{1}{x^{3/2}(x+1)} dx + \int_1^\infty \frac{1}{x^{3/2}(x+1)} dx$. In the first integral, near x = 0, $x^{3/2}(x+1) = x^{5/2} + x^{3/2}$ looks like $x^{3/2}$, so we expect that $\int_0^1 \frac{1}{x^{3/2}(x+1)} dx$ and $\int_0^1 \frac{1}{x^{3/2}} dx$ have the same behavior. We know $\int_0^1 \frac{1}{x^{3/2}} dx$ diverges, so let's try and use this as a lower bound. We have $x^{3/2}(x+1) < 2x^{3/2}$, so indeed this gives

 $\frac{1}{x^{3/2}(x+1)} > \frac{2}{x^{3/2}}.$ Integrating both sides then shows that $\int_0^1 \frac{1}{x^{3/2}(x+1)} dx$ diverges. For the second piece $\int_1^\infty \frac{1}{x^{3/2}(x+1)} dx$, as x goes to infinity, $x^{3/2}(x+1) = x^{5/2} + x^{3/2}$ behaves like $x^{5/2}$, so we expect that $\int_1^\infty \frac{1}{x^{3/2}(x+1)} dx$ and $\int_1^\infty \frac{1}{x^{5/2}} dx$ have the same behavior. The latter integral converges, so we try to use it as an upper bound. We see $x^{3/2}(x+1) > x^{5/2}$, so that $\frac{1}{x^{3/2}(x+1)} < \frac{1}{x^{5/2}}.$ This gives $\int_1^\infty \frac{1}{x^{3/2}(x+1)} dx < \int_1^\infty \frac{1}{x^{5/2}} dx$, so that by the comparison test, $\int_1^\infty \frac{1}{x^{3/2}(x+1)} dx$ converges. Since the first piece diverges and the second piece converges, we find that $\int_0^\infty \frac{1}{x^{3/2}(x+1)} dx$ diverges.

- 12. There is a singularity at x = 0, so we need to analyze the integrand there. On the interval [0, 1] the function e^x is bounded and therefore makes little contribution, so we expect $\int_0^1 \frac{e^x}{x^2} dx$ and $\int_0^1 \frac{1}{x^2} dx$ to have the same behavior. As $1 \le e^x$ for $0 \le x \le 1$, this says $\frac{e^x}{x^2} \ge \frac{1}{x^2}$. Integrating both sides gives $\int_0^1 \frac{1}{x^2} dx \le \int_0^1 \frac{e^x}{x^2} dx$. Since $\int_0^1 \frac{1}{x^2} dx$ diverges, by the comparison test we must have that $\int_0^1 \frac{e^x}{x^2} dx$ diverges.
- 13. As x goes to infinity, because e^x grows faster than x^4 , we see e^x has the biggest contribution in $x^4 + e^x$. So we expect that $\int_1^{\infty} \frac{1}{x^4 + e^x} dx$ and $\int_1^{\infty} \frac{1}{e^x} dx$ have the same behavior. We have $x^4 + e^x > e^x$, so that $\frac{1}{x^4 + e^x} < \frac{1}{e^x}$. Integrating gives $\int_1^{\infty} \frac{1}{x^4 + e^x} dx < \int_1^{\infty} \frac{1}{e^x} dx$, and one can check that $\int_1^{\infty} \frac{1}{e^x} dx$ does in fact converge. By the comparison test, this says $\int_1^{\infty} \frac{1}{x^4 + e^x} dx$ converges.
- 14. There is a singularity at x = 0, in the integrand, so we need to analyze the behavior of $\frac{1}{xe^x + x^2}$ near there. Note that e^x is bounded on [0,1] so it does not contribute much to the term $xe^x + x^2$. In fact, $e^x \approx 1$ near 0, so $xe^x + x^2 \approx x + x^2$. How does $x + x^2$ behave near x = 0? The term with the largest contribution is x, so $x + x^2 \approx x$ and we then expect that $\int_0^1 \frac{1}{xe^x + x^2} dx$ and $\int_0^1 \frac{1}{x} dx$ have the same behavior. Since $\int_0^1 \frac{1}{x} dx$ diverges, we try to use this as a lower bound. For $0 \le x \le 1$, we have $e^x \le e$, so that $xe^x + x^2 \le xe + x^2$. As $x^2 \le x$ on this interval as well, $xe^x + x^2 \le xe + x = x(e+1)$. This says $xe^x + x^2 \le x(e+1)$, so that $\frac{1}{xe^x + x^2} \ge \frac{1}{x(e+1)}$. Integrating this inequality says $\frac{1}{e+1} \int_0^1 \frac{1}{x} dx \le \int_0^1 \frac{1}{xe^x + x^2} dx$, so by the comparison test, $\int_0^1 \frac{1}{xe^x + x^2} dx$ [diverges].
- 15. Write $\int_{1}^{\infty} \frac{\sin(x)}{x} dx = \lim_{R \to \infty} \int_{1}^{R} \frac{\sin(x)}{x} dx$. Using integration by parts with $u = \frac{1}{x}$ and $dv = \sin(x)$, we find $\int_{1}^{R} \frac{\sin(x)}{x} dx = -\frac{\cos(x)}{x} \Big|_{1}^{R} \int_{1}^{R} \frac{\cos(x)}{x^{2}} dx = \cos(1) \frac{\cos(R)}{R} \int_{1}^{R} \frac{\cos(x)}{x^{2}} dx$. As $R \to \infty$, $\frac{\cos(R)}{R} \to 0$ by the squeeze theorem, and $\lim_{R \to \infty} \int_{1}^{R} \frac{\cos(x)}{x^{2}} dx = \int_{1}^{\infty} \frac{\cos(x)}{x^{2}} dx \le \int_{1}^{\infty} \frac{1}{x^{2}} dx < \infty$. This says $\int_{1}^{\infty} \frac{\sin(x)}{x} dx = \lim_{R \to \infty} \int_{1}^{R} \frac{\sin(x)}{x} dx = \cos(1) - \int_{1}^{\infty} \frac{\cos(x)}{x} dx = \cos(1) - \int_{1}^{\infty} \frac{\cos(x)}{x^{2}} dx$ is finite, so the integral converges.

16. Near x = 0, $e^x \approx 1 + x$, so $e^x - 1 \approx x$, and similarly we have $\arctan(x) \approx x$, so near x = 0, $\frac{\arctan(x)}{e^x - 1} \approx 1$, and therefore we expect the integral converges. To apply the comparison test, we will show that $\frac{\arctan(x)}{e^x - 1} \leq 1$ for all x. To see this, the trick is to instead look at derivatives: $\frac{1}{x^2 + 1} \leq 1 \leq e^x$ for all x, so integrating yields $\arctan(x) = \int_0^x \frac{1}{t^2 + 1} dt \leq \int_0^x e^t dt = e^x - 1$, i.e. $\frac{\arctan(x)}{e^x - 1} \leq 1$. This then gives $\int_0^1 \frac{\arctan(x)}{e^x - 1} dx \leq \int_0^1 1 dx = 1$, so by the comparison test, $\int_0^1 \frac{\arctan(x)}{e^x - 1} dx$ converges.