
INFINITE SERIES

TIM SMITS

These notes are a treatment of the standard convergence tests for infinite series as covered
in a second semester calculus course like Math 31B at UCLA. There may be many typos –
please let me know if any are found!

1. Introduction

Definition 1.1. A sequence is a function f : N → R, where N is the set of non-negative
integers.

We usually write an to denote the value f(n) of the function f , because we like to think of
sequences as different types of objects than functions. Often times, it’s useful to think about
a sequence as it’s set of values {an}, and we typically write {an} to refer to the sequence
instead of f .

Example 1.2. We can think of the sequence an = 1
n2 as either being some object explicitly

defined by the above formula, or as the list of values {1, 1
4
, 1
9
, 1
16
, . . .}.

Example 1.3. Define a sequence by F1 = F2 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 3.
This is an example of a recursive sequence, a sequence where the value at some given
n depends on the previous terms. Explicitly, the first few terms of this sequence are
1, 1, 2, 3, 5, 8, 13, 21, 34, . . .. This sequence is called the Fibonacci sequence.

Since sequences are functions, all the usual operations you’re used to doing with functions
make sense for sequences: addition/subtraction, multiplication/division, taking limits, etc.
Ultimately, our goal is to understand how calculus works in the discrete world, with sequences
taking the role of functions. Below are the analogies between calculus in R and discrete
calculus that should be kept in mind to strengthen conceptual understanding.

Calculus in R Discrete calculus
Functions f : R→ R Sequences {an}
Derivative: d

dx
f(x) Forward difference: ∆an = an+1 − an

Anti-derivative:
∫
f(x) dx Partial sum:

∑N
n=1 an

Definite integral:
∫ b
a
f(x) dx Sum:

∑b
n=a an

Improper integral:
∫∞
1
f(x) dx Infinite series:

∑∞
n=1 an

2. Basic definitions

Definition 2.1. Given a sequence {an}, define a new sequence {SN} by SN = a1 + a2 +

. . . + aN =
∑N

n=1 an. The sequence {SN} is called the sequence of partial sums of {an}.
An infinite series is an expression of the form

∑∞
n=1 an, i.e. addition of infinitely many

terms of some sequence (for convenience the starting index is 1, but it does not matter).
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As is usual in calculus, to try and understand something “infinite”, we have to take limits
of “finite” things that we understand. Analogously to how we define

∫∞
1
f(x) dx through

limits of definite integral limR→∞
∫ R
1
f(x) dx, we will define an infinite series by taking a

limit of its partial sums.

Definition 2.2. We say
∑∞

n=1 an converges if limN→∞ SN is finite, and if limN→∞ SN = L,
we say

∑∞
n=1 an = L. The infinite series

∑∞
n=1 an diverges if limN→∞ SN does not exist.

Series can be confusing at first because of the different types of objects involved. A series
is a formal infinite expression of the form a1+a2+. . .. A series can be assigned a value, which
is obtained by taking a limit of a sequence (the sequence of partial sums). In particular,
don’t mix up sequences with series: series have a value, sequences are functions.

Example 2.3. Set an = 1
n
, so that SN =

∑N
n=1

1
n
. The first few terms of the sequence SN

are given by 1, 3
2
, 11

6
, 25
12
, 137

60
, . . .. The series

∑∞
n=1

1
n

is called the harmonic series. It turns

out that
∑∞

n=1
1
n

diverges (which is not at all obvious).

Example 2.4. Set an = n. Then the sequence of partial sums {SN} has terms given by

SN =
∑N

n=1 n = N(N+1)
2

. Since limN→∞ SN =∞, the series
∑∞

n=1 n diverges.

Example 2.5. Let {an} be a sequence such that the N -th partial sum is given by SN =
3 − 1

N2 . Since limN→∞ SN = 3, this says
∑∞

n=1 an converges, and we have
∑∞

n=1 an = 3.
Notice we know nothing about the actual terms in the sequence {an} – the definition of
convergence or divergence of an infinite series depends only on the partial sums.

Example 2.6. With SN = 3 − 1
N2 as above, we can recover what the general term of the

sequence is. Taking a forward difference, we have ∆SN = SN+1−SN =
∑N+1

n=1 an−
∑N

n=1 an =
aN+1, so aN+1 = 1

N2 − 1
(N+1)2

. Re-indexing, we find an = 1
(n−1)2 −

1
n2 for n ≥ 2, and

S1 = a1 = 2. This process is analogous to how a function can be recovered from knowledge
of it’s anti-derivative by differentiating.

3. Geometric and Telescoping series

Definition 3.1. A geometric series is an infinite series of the form
∑∞

n=M arn for some
non-zero real numbers a and r, and some starting index M .

Geometric series are “simple” series in the sense that we can classify their behavior com-
pletely:

Theorem 3.2 (Classification of geometric series). If |r| < 1, then
∑∞

n=M arn converges,

and
∑∞

n=M arn = arM

1−r . Otherwise if |r| ≥ 1, then
∑∞

n=M arn diverges.

Example 3.3. The series
∑∞

n=1 5(1
2
)n is a geometric series with a = 5, r = 1

2
, and M = 1.

We see
∑∞

n=1 5(1
2
)n = 5/2

1−1/2 = 5.

Example 3.4. Consider the infinite series
∑∞

n=0
3·22n−2+(−1)n5n+1

6n
. Splitting this up, we can

write this as
∑∞

n=0
3·22n−2

6n
+
∑∞

n=0(−1)n 5n+1

6n
. Using exponent rules to write each sum as a

geometric series, we find
∑∞

n=0
3·22n−2+5n+1

6n
=
∑∞

n=0
3
4
(4
6
)n +

∑∞
n=0 5(−5

6
)n = 3/4

1−2/3 + 5
1+5/6

=
219
44

using the above formula.
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Definition 3.5. A telescoping series is an infinite series of the form
∑∞

n=1(an+1− an) for
some sequence {an}.

The name telescoping comes from writing down the summation of the terms in the series –
they cancel out and “collapse” like a telescope. The N -th partial sum of a telescoping series
is SN =

∑N
n=1(an+1−an) = (a2−a1)+(a3−a2)+(a4−a3)+. . .+(aN−aN−1)+(aN+1−aN) =

aN+1 − a1, so taking a limit gives the following:

Theorem 3.6 (Discrete FTC). Suppose that limn→∞ an = L. Then
∑∞

n=1(an+1 − an) =
L− a1.

Writing the above statement using the forward difference operator, the theorem says∑∞
n=1 ∆an = L−a1 where L = limn→∞ an. The analogue is the statement that

∫∞
1
f ′(x) dx =

L−f(1) where L = limx→∞ f(x), which is just the fundamental theorem of calculus (applied
to improper integrals).

Example 3.7. The series
∑∞

n=1
1

n(n+1)
is a telescoping series. To see this, using partial

fractions we can write 1
n(n+1)

= 1
n
− 1

n+1
, and we then see

∑∞
n=1(

1
n
− 1

n+1
) is a telescoping

series with an = − 1
n
, and limn→∞ an = 0, so that

∑∞
n=1(

1
n
− 1

n+1
) = 1.

Example 3.8. Consider the series
∞∑
n=1

ln( (n+1)n

n(n+1) )

n(n+ 1)
. Using log rules, we can write this as

∑∞
n=1

n ln(n+1)−(n+1) ln(n)
n(n+1)

=
∑∞

n=1

(
ln(n+1)
n+1

− ln(n)
n

)
. This is a telescoping series with an = ln(n)

n
.

As limn→∞
ln(n)
n

= 0, we find
∑∞

n=1

ln(
(n+1)n

n(n+1)
)

n(n+1)
= 0.

Unlike with integration where we have many different techniques and rules for explicitly
computing anti-derivatives, finding a sequence bn with ∆bn = an is in general, very hard.
Therefore, it’s generally not very obvious if a series telescopes or not! Because this process is
so difficult, it’s not very easy to go through the definition of an infinite series to determine if
it converges or diverges. We’ll have to develop more theory to help us get around this issue.

4. The comparison tests

There is a useful test for quickly checking if a series diverges:

Theorem 4.1 ( Divergence Test). Let {an} be a sequence. If limn→∞ an 6= 0, then
∑∞

n=1 an
diverges.

Example 4.2. The divergence test says the series
∑∞

n=1
n
n+1

diverges, because limn→∞
n
n+1

=

1 6= 0. The series
∑∞

n=1(1 + sin(n)) also diverges, because limn→∞ 1 + sin(n) does not exist.

Warning: the divergence test does not say that if limn→∞ an = 0, that
∑∞

n=1 an converges.
As we will later see, the series

∑∞
n=1

1
n2 converges, but as mentioned before the harmonic

series
∑∞

n=1
1
n

diverges. In both series, the general term tends to 0, so if this happens we
cannot conclude anything about convergence or divergence.

Our first two series test are going to be our most powerful ones.

Theorem 4.3 (Direct comparison test). Let
∑
an,
∑
bn be infinite series with an, bn ≥ 0,

and assume that
∑
an ≤

∑
bn eventually.
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(a) If
∑
an diverges, then

∑
bn diverges.

(b) If
∑
bn converges, then

∑
an converges.

Intuitively, the direct comparison test says anything smaller than a convergent series
converges (i.e. anything smaller than a finite sum is finite), and anything larger than a
divergent series is divergence (i.e., anything larger than an infinite sum is infinite). Notice
that we only need that the inequality on series holds eventually. We may always rip out a
finite number of terms from the sum (which doesn’t change convergence) to make such an
inequality explicitly true (provided an ≤ bn eventually holds).

Theorem 4.4 (Limit comparison test). Let
∑
an,

∑
bn be infinite series with an ≥ 0

and bn > 0. Set L = limn→∞
an
bn

and assume that L exists. If 0 < L < ∞, then
∑
an and∑

bn both converge or diverge together.

Intuitively, if L is finite, this says eventually, that an ≈ Lbn, so the terms in the series
roughly differ by a constant multiple, which won’t change the convergence or divergence.

Each comparison test has its own set of pros and cons. In general, the direct comparison
test will be a bit harder to apply, since one needs to exhibit explicit inequalities, which might
be tricky to find. The limit comparison test is typically more useful, because in the process
of intuitively reasoning if a series will converge or diverge, one often gets another series to
compare with for free, and computing a limit is much easier than trying determine which
series is larger. The direct comparison tests is more useful in a few specific cases: when the
series has terms with logarithms (which grow too slowly to find a different series with similar
growth speed), or with exponentials (which grow too quickly). Another situation where the
direct comparison test is useful is when trigonometric functions like sine or cosine appear, as
we have explicit upper/lower bounds on these functions. When we later cover Taylor series,
we will see how to come up with good approximations to these types of functions that allow
the limit comparison test to more easily apply.

Before moving onto examples, we need some series whose behavior is known that we can
compare to. Above we classified the convergence or divergence of geometric series. Another
common family of series, known as p-series, have the following behavior:

Theorem 4.5 (Classification of p-series). The p-series
∑∞

n=1
1
np converges if p > 1 and

diverges if 0 < p ≤ 1.

It will be useful to know how quickly certain commonly encountered functions grow. We
will use the notation “an � bn” to mean the sequence an is eventually smaller than bn, i.e.
there is some N such that an ≤ bn for all n ≥ N . Another way of saying this is that an
grows slower than bn.

Theorem 4.6. The following hold for any a > 0 and any b > 1: ln(n)� na � bn � n!�
nn.

Remark 4.7. The above theorem is actually even stronger than what is stated. As you
move up the hierarchy, not only do you have eventual inequalities, but you also have eventual
limit domination, meaning that the limit of the ratio tends to 0 as n → ∞. For example,

limn→∞
ln(n)
na = 0 for any a > 0. This strengthening of the theorem can be proved by repeated

applications of L’Hopital’s rule (and in fact, is really how you would prove the above version
anyway.)
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Example 4.8. The series
∑∞

n=1
1
n2n

converges. The general term 1
n2n

decays more quickly

than 1
2n

, and the series
∑∞

n=1
1
2n

converges, so we expect our series converges as well. We see

that 2n < n2n, so that 1
n2n

< 1
2n

for all n. This says
∑∞

n=1
1
n2n

<
∑∞

n=1
1
2n

. The latter is a
convergent geometric series, so the result follows by the direct comparison test.

Example 4.9. The series
∑∞

n=0
4

4n+n!
converges. The general term 1

n!+4n
decays more quickly

than 1
4n

, and the series
∑∞

n=0
1
4n

converges, so we expect our series converges as well. Since

n! + 4n > 4n for all n ≥ 0, we see that 1
4n+n!

< 1
4n

, so multiplying by 4 says 4
4n+n!

< 4
4n

for

n ≥ 0. Since
∑∞

n=0
4
4n

= 4
∑∞

n=0(
1
4
)n is a convergent geometric series, we see that

∑∞
n=0

4
4n+n!

converges by a direct comparison test.

Example 4.10. The series
∑∞

n=1

√
n

n−1 diverges. As n→∞,
√
n

n−1 ≈
√
n
n

= 1√
n
. Since

∑∞
n=1

1√
n

diverges, we think our series should diverge as well. Since n − 1 < n, we get 1
n−1 >

1
n

so

that
√
n

n−1 >
√
n
n

= 1√
n
. The series

∑∞
n=1

1√
n

is a divergent p-series with p = 1/2, so the result

follows by the direct comparison test.

Example 4.11. The series
∑∞

n=1
1

3√n(1+
√
n)

diverges. As n → ∞, 1 +
√
n ≈

√
n, so that

1
3√n(1+

√
n)
≈ 1

n5/6 . Since
∑∞

n=1
1

n5/6 is a divergent p-series, we expect our original series also

diverges. As 1 ≤
√
n for n ≥ 1, we see 1 +

√
n ≤
√
n +
√
n = 2

√
n, so that 3

√
n(1 +

√
n) ≤

3
√
n(2
√
n) = 2n5/6. This then says 1

3√n(1+
√
n)
≥ 1

2n5/6 , and
∑∞

n=1
1

2n5/6 is a divergent p-series

with p = 5/6. The original series diverges by a direct comparison.

Example 4.12. The series
∑∞

n=1
1

n−ln(n) diverges. As n→∞, the only term that matters in

the denominator is n, because logarithms grow slowly. So we expect 1
n−ln(n) ≈

1
n
, which would

say that
∑∞

n=1
1

n−ln(n) and
∑∞

n=1
1
n

should have the same behavior. The latter is the divergent

harmonic series, so we expect our original series diverges. Set an = 1
n−ln(n) and bn = 1

n
. Then

an
bn

= n
n−ln(n) and limn→∞

an
bn

= limn→∞
n

n−ln(n) = 1 by L’Hopital’s rule. Therefore by the limit

comparison test, our original series diverges.

Example 4.13. The series
∑∞

n=1
n3

n5+4n+1
converges. As n→∞, the fastest growing term in

the denominator is n5, so we expect n3

n5+4n+1
≈ n3

n5 = 1
n2 . Using a limit comparison test with

an = n3

n5+4n+1
and bn = 1

n2 , we see limn→∞
an
bn

= limn→∞
n5

n5+4n+1
= 1. This says the behavior

of the original series is the same as
∑∞

n=1
1
n2 , which is a convergent p-series. The result then

follows by the limit comparison test.

Example 4.14. The series
∑∞

n=1
en+n
e2n−n2 converges. As n→∞, the exponential terms are the

only things that matter in the numerator and denominator, because they grow the fastest.
Therefore, en+n

e2n−n2 ≈ en

e2n
= (1

e
)n. Therefore, we expect that

∑∞
n=1

en+n
e2n−n2 and

∑∞
n=1(

1
e
)n have

the same behavior. The latter series is a convergent geometric series with r = 1
e
, so our

original series should converge as well. Set an = en+n
e2n−n2 and bn = 1

en
. Then an

bn
= e2n+nen

e2n−n2 .

After dividing both numerator and denominator by e2n, we may write this as an
bn

=
1+ n

en

1− n2

e2n

.

Therefore, limn→∞
an
bn

= limn→∞
1+ n

en

1− n2

e2n

= 1. By the limit comparison test, we get what we

want.

Example 4.15. The series
∑∞

n=1 sin( 1
n2 ) converges. When x is close to 0, sin(x) ≈ x. As

n → ∞, 1
n2 → 0 so we expect sin( 1

n2 ) ≈ 1
n2 . Since

∑∞
n=1

1
n2 converges, we expect that
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our original series does as well. Using an = sin( 1
n2 ) and bn = 1

n2 , we see limn→∞
an
bn

=

limn→∞
sin( 1

n2 )
1
n2

= limu→0
sin(u)
u

= 1 via the substitution u = 1
n2 . This says the series have the

same behavior, so the result follows via the limit comparison test.

Example 4.16. Sometimes it’s useful to chain comparison tests together. The series
∑∞

n=2
ln(n)√
n3−n2

is convergent. As n→∞, the fastest growing term in the denominator is n3, so
√
n3 − n2 ≈√

n3 = n3/2. So we expect that
∑∞

n=2
ln(n)√
n3−n2 and

∑∞
n=2

ln(n)

n3/2 have the same behavior. This

can be checked using the limit comparison test: with an = ln(n)√
n3−n2 and bn = ln(n)

n3/2 we see that
an
bn

= n3/2
√
n3−n2 → 1. Therefore, we just need to determine what

∑∞
n=2

ln(n)

n3/2 does. In order to

analyze this series, we need a fact about the growth speed of logarithms: they grow slower
than any power function. Formalized mathematically, this says for any a > 0, there exists
N such that ln(n) < na for n ≥ N . Picking a = 1/4, this says ln(n) < n1/4 eventually, so

that eventually
∑ ln(n)

n3/2 <
∑

n1/4

n3/2 =
∑

1
n5/4 . The latter series is a convergent p-series, so by

a direct comparison,
∑ ln(n)

n3/2 converges and we are done.

5. The integral test

Conceptually, the integral test is the most important convergence test: it says that if
the terms of an infinite series are “nice”, the behavior of the series and the behavior of the
corresponding improper integral should be the same. This provides the explicit link between
infinite series and integration.

In practice, the integral test is often not that useful. In order for it to apply, you must
know how to integrate the general term of an infinite series – this is something you either
know you can do, in which case the test will work, otherwise if you don’t know how to
integrate the general term, the test is completely useless. It’s generally best to try other
convergence tests before trying the integral test, unless you are confident you can make it
work.

Theorem 5.1 (Integral test). Let an = f(n) where f(x) is a non-negative, continuous
function that is eventually decreasing for x ≥ M for some M . Then

∑
an and

∫∞
M
f(x) dx

both converge or both diverge.

Example 5.2. We can use the integral test to classify the behavior of p-series. Set f(x) = 1
xp

.
Then f ′(x) = −pxp−1 < 0 for x > 0, so that f(x) is decreasing. It’s clear that f(x) is non-
negative for x > 0, and also that it’s continuous. Therefore by the integral test,

∑∞
n=1

1
np

and
∫∞
1

1
xp
dx have the same behavior. First we handle the case p 6= 1. By definition,∫∞

1
1
xp
dx = limR→∞

∫ R
1
x−p dx = limR→∞

x1−p

1−p

∣∣R
1

= limR→∞
R1−p

1−p −
1

1−p . If p > 1, then

1 − p < 0, so that R1−p → 0 as R → ∞, so that
∫∞
1

1
xp
dx = − 1

1−p < ∞. If p < 1, then

1−p > 0, so that R1−p →∞ as R→∞, which says
∫∞
1

1
xp
dx diverges. In the case p = 1, the

integral in question that we care about is
∫∞
1

1
x
dx = limR→∞

∫ R
1

1
x
dx = limR→∞ ln |x|

∣∣R
1

=

limR→∞ ln(R) =∞, so that
∫∞
1

1
x
dx diverges. Putting this all together, we find that

∑∞
n=1

1
np

converges for p > 1 and diverges for p ≤ 1.

Example 5.3. One place where the integral test really shines is when there are loga-
rithms floating around: the series

∑∞
n=2

1
n ln(n)

diverges. Set f(x) = 1
x ln(x)

. Then f ′(x) =
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− (1+ln(x))
x2 ln(x)2

< 0 for x ≥ 2. The function f(x) is also non-negative for x ≥ 2, and it’s

clearly continuous, so by the integral test, the series
∑∞

n=2
1

n ln(n)
and the improper integral∫∞

2
1

x ln(x)
dx have the same behavior. By definition, the latter integral is limR→∞

∫ R
2

1
x ln(x)

dx

= limR→∞ ln(ln(x))
∣∣R
2

= limR→∞ ln(ln(R))− ln(ln(2)) =∞. Therefore, the integral diverges,
so that the series diverges.

The right way to really think about the integral test is not as a test for convergence
of infinite series, but as a test for convergence of integrals. The integral test is incredibly
important if you think about it this way, because it gives us significantly more techniques
than we had before to determine if integrals converge or diverge!

Example 5.4. Suppose we wanted to know if
∫∞
0

x3+x+1
x4+1

dx converges or diverges. Using
what we learned before, we could split the integral up and do several direct comparison tests.
Alternatively, we could use the integral test, and then a limit comparison test. The function

f(x) = x3+x+1
x4+1

is clearly non-negative and continuous, and f ′(x) = − (x6+3x4+4x3−3x2−1)
(x4+1)2

is

negative for x > 1 (which is not terribly hard to see). Therefore, by the integral test,∫∞
0

x3+x+1
x4+1

dx and
∑∞

n=0
n3+n+1
n4+1

have the same behavior. As n → ∞, n3+n+1
n4+1

≈ 1
n
. Doing a

limit comparison test on
∑∞

n=0
n3+n+1
n4+1

with
∑∞

n=1
1
n

will show it diverges, and so the integral
diverges as well.

The proof of the integral test gives the following upper and lower bounds of the sum:

Theorem 5.5 (Integral test estimate). Suppose that
∑∞

n=0 an is a convergent series satis-
fying the conditions of the integral test with an monotonically decreasing for n ≥ N . Then∫∞
N
f(x) dx ≤

∑∞
n=N an ≤ aN +

∫∞
N
f(x) dx.

Example 5.6. Since
∑∞

n=1
1
n2 is a convergent series satisfying the conditions of the integral

test, we have 1 =
∫∞
1

1
x2
dx ≤

∑∞
n=1

1
n2 ≤ 1 +

∫∞
1

1
x2
dx = 2. The actual value of the sum was

shown by Euler to be π2

6
≈ 1.645!

6. The root and ratio tests

We now move on to series tests that are applicable to terms with negative terms. So far,
none of our convergence tests have been “easy”, in the sense that given a series, we can’t just
test if it converges or diverges by itself. We fix this with the root and ratio tests, which are
arguably the easiest to use convergence tests. Before we do that, we need some terminology
that applies to series that have negative terms.

Definition 6.1. An infinite series
∑
an converges absolutely if

∑
|an| converges. If∑

|an| diverges and
∑
an converges, then we say

∑
an converges conditionally.

Absolute convergence is a “stronger” form of convergence, in the following sense:

Theorem 6.2 (Absolute convergence test). If
∑
|an| converges, then

∑
an converges.

That is, an absolutely convergent series converges.

Example 6.3. We’ll see later that
∑∞

n=1
(−1)n−1

n
converges while

∑∞
n=1

1
n

diverges, so that∑∞
n=1

(−1)n−1

n
is a conditionally convergent series.
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Example 6.4. The series
∑∞

n=1
cos(n)
2n

converges absolutely. Taking absolute values, since

| cos(n)| ≤ 1, we have
∑∞

n=1
| cos(n)|

2n
≤
∑∞

n=1
1
2n

which is a convergent geometric series.

We now state the ratio and root tests:

Theorem 6.5 (Ratio test). Let
∑
an be an infinite series. Set L = limn→∞ |an+1

an
|.

(a) If 0 ≤ L < 1, then
∑
an converges absolutely.

(b) If L > 1, then
∑
an diverges.

(c) if L = 1, the ratio test says nothing.

Theorem 6.6 (Root test). Let
∑
an be an infinite series. Set L = limn→∞

n
√
|an|.

(a) If 0 ≤ L < 1, then
∑
an converges absolutely.

(b) If L > 1, then
∑
an diverges.

(c) if L = 1, the root test says nothing.

Both the root and ratio test require only a single infinite series to perform the test, and
further more, when they work they tell you explicitly whether or not the series converges
(even absolutely!) or diverges. The drawback is that they don’t always work. Of the two,
the ratio test is more useful in practice. In fact, the root test is really only helpful when
there are expressions raised to n-th powers, and don’t involve any factorials. The ratio test is
significantly more useful when factorials appear (more than any other convergence test), and
handles n-th powers relatively easily as well. If you’re trying to determine if an infinite series
converges or not, and it’s not of a special form (i.e. alternating, geometric, telescoping), and
there’s nothing to obviously do a limit comparison with, I recommend trying the ratio test.

One last thing that’s worth pointing out: it’s not a coincidence that the two tests look
very similar. The root test is actually stronger than the ratio test, in the sense that you
prove the ratio test by using the root test. If the ratio test works, you could have also done
the root test. Sometimes if the ratio test doesn’t work, the root test will work. If the root
test doesn’t work, don’t bother with the ratio test: it won’t work either!

Example 6.7. The series
∑∞

n=1
2n
nn converges. Set an = 2n

nn . Then n
√
|an| = (2n)1/n

n
. As

n → ∞, we see that (2n)1/n → 1: this is because if L = limn→∞(2n)1/n, then ln(L) =

limn→∞
ln(2n)
n

= 0 by L’Hopital’s rule, so L = 1. This says n
√
|an| → 0 as n → ∞. Conver-

gence then follows from the root test.

Example 6.8. The series
∑∞

n=1(1 + 1
n
)−n

2
converges. Set an = (1 + 1

n
)−n

2
, then n

√
|an| =

(1 + 1
n
)−n. As n→∞, we see limn→∞

1
(1+1/n)n

= 1
e
< 1, so the convergence follows from the

root test.

Example 6.9. The series
∑∞

n=1
n!

(2n)!
converges. Set an = n!

(2n)!
. Then |an+1

an
| = (n+1)!

(2n+2)!
· (2n)!

n!
=

n+1
(2n+2)(2n+1)

→ 0 < 1 as n→∞. The convergence then follows by the ratio test.

Example 6.10. The series
∑∞

n=1
2n

2

n!
diverges. Set an = 2n

2

n!
, then |an+1

an
| = 2n

2+2n+1

(n+1)!
· n!

2n2 =
22n+1

n+1
→∞. Therefore the series diverges by the ratio test.

Example 6.11. The series
∑∞

n=1
n!
nn converges. Set an = n!

nn . Then |an+1

an
| = (n+1)!nn

(n+1)n+1n!
=

(n+1)nn

(n+1)(n+1)n
= ( n

n+1
)n = (1 + 1

n
)−n. As n→∞, we have (1 + 1

n
)−n → 1

e
, so the result follows

by the ratio test.



INFINITE SERIES 9

7. Alternating series

Our last type of series we study is when the negative terms are predictable, specifically,
when the terms of the series alternate between positive and negative.

Definition 7.1. An alternating series is an infinite series of the form
∑

(−1)nan where
an ≥ 0.

Because of the alternation between positive and negative terms, this makes it harder for
the sum to diverge to infinity, so in some sense, alternating series are more “well behaved”.
One way of phrasing this is as follows:

Theorem 7.2 (Alternating series test). Let
∑

(−1)nan be an alternating series. If
limn→∞ an = 0 and an is monotonically decreasing, then

∑
(−1)nan converges.

The first condition of the alternating series test is a requirement for the series to even
converge in the first place (otherwise it diverges by the divergence test), so really the only
condition we are imposing on the terms is that they are strictly decreasing, which is a rel-
atively tame condition as far as “niceness” of sequences go. The alternating series test has
one weakness: it cannot show an alternating series diverges. In fact, the conditions of the
alternating series test say that a divergent alternating series has to be fairly complicated
(provided it doesn’t obviously diverge, i.e. has limn→∞ an 6= 0).

Example 7.3. The series
∑∞

n=1
(−1)n−1

n
converges conditionally: we know

∑∞
n=1

1
n

diverges,

but clearly 1
n

goes to 0 and is monotonically decreasing, and so by the alternating series test,∑∞
n=1

(−1)n−1

n
converges conditionally.

Example 7.4. The series
∑∞

n=1(−1)n 1
1+ 1

n

diverges because limn→∞(−1)n 1
1+ 1

n

does not exist

– not every alternating series requires the alternating series test!

Example 7.5. The series
∑∞

n=2(−1)n 1
n2 ln(n)

converges. With an = 1
n2 ln(n)

, it’s clear that

limn→∞ an = 0, and we see that an is decreasing because the function f(n) = 1
n2 ln(n)

has

derivative f ′(n) = −2 ln(n)+1
n3 ln(n)2

< 0 for n ≥ 1. The result follows by the alternating series test.

In fact, the convergence is absolute: the series
∑∞

n=2
1

n2 ln(n)
converges because n2 ln(n) > n2

for n ≥ 3, so
∑∞

n=3
1

n2 ln(n)
<
∑∞

n=3
1
n2 which is a convergent p-series.

Example 7.6. The series
∑∞

n=1
cos(πn)

n2/3 converges conditionally. Notice that cos(πn) = (−1)n,

so this is really just the series
∑∞

n=1(−1)n 1
n2/3 . It’s clear that 1

n2/3 → 0 as n → ∞, and the

function f(n) = n−2/3 has derivative f ′(n) = −2
3
n−5/3 < 0, so it converges by the alternating

series test. However, taking an absolute value, the series
∑∞

n=1
1

n2/3 is a divergent p-series.

Example 7.7. The series
∑∞

n=1(−1)n e
1/n

n
converges conditionally. As n → ∞, 1

n
→ 0,

and ex ≈ 1 for x ≈ 0. This says as n → ∞, that e1/n

n
≈ 1

n
. First, we show that we do

not converge absolutely: the series
∑∞

n=1
e1/n

n
should behave like the series

∑∞
n=1

1
n
, which

diverges. Indeed, using the limit comparison test with an = e1/n

n
and bn = 1

n
, we have

an
bn

= e1/n and clearly limn→∞
an
bn

= 1. By the limit comparison test,
∑∞

n=1
e1/n

n
diverges.

The alternating series however, converges. With an = e1/n

n
, it’s clear that an ≥ 0 and
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limn→∞ an = limn→∞
e1/n

n
= 0. Set f(n) = e1/n

n
. Then f ′(n) = − e1/n(n+1)

n3 < 0. This says an
is decreasing, so by the alternating series test, we are done.

Example 7.8. The series
∑∞

n=1(−1)n+1 10n

2n2 converges absolutely. To see this, use the root

test: |an|1/n = 10
2n

and clearly |an|1/n → 0 as n → ∞. The alternating series test isn’t the
only thing you should try when you see alternating series!

Example 7.9. We give an example of a (non-obvious) divergent alternating series. Define

an =

{
1/n n is even

1/n2 n is odd

I claim the series
∑∞

n=1(−1)nan diverges. We show this via the definition of convergence for

an infinite series. The N -th partial sum is given by SN =
∑N

n=1(−1)nan = −
∑

k≤N, k odd
1
k2

+∑
k≤N, k even

1
k
. As N → ∞, the first sum converges, because

∑
k odd

1
k2
≤
∑∞

n=1
1
n2 and∑∞

n=1
1
n2 converges, while the second sum diverges, because

∑
k even

1
k

= 1
2

∑∞
n=1

1
n

is the
harmonic series. Since the partial sums diverge, the series

∑∞
n=1(−1)nan diverges.

Alternating series have a very nice error bound, that make it very easy to estimate these
types of sums.

Theorem 7.10 (Alternating series error bound). Let
∑∞

n=0(−1)nan be a convergent alter-
nating series, and let S denote the value of the sum. Then |S − SN | ≤ aN+1.

Example 7.11. We saw that
∑∞

n=1
(−1)n
n

converges. For any value of N ,
∑N

n=1
(−1)n
n

ap-

proximates the true value of the sum within an error of 1
N+1

. To guarantee two deci-
mal places of accuracy, we can take N = 99, for example, and one may compute with

a computer that
∑99

n=1
(−1)n
n
≈ −.698, so that

∑∞
n=1

(−1)n
n
≈ −.69. We’ll see later that∑∞

n=1
(−1)n
n

= − ln(2) ≈ −.693147 – the series converges very slowly!
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8. Summary of tests

Test Applicable Series Conclusion Additional
Always try this first.

Divergence
∑

an Diverges if lim
n→∞

an 6= 0 Inconclusive if lim
n→∞

an = 0.

Can not show convergence!!

Geometric Series
∞∑

n=M

crn Converges if |r| < 1, diverges if |r| ≥ 1 Converges to value
crM

1− r

If
∑

bn converges, then
∑

an converges

Direct Comparison
∑

an and
∑

bn

with 0 ≤ an ≤ bn eventually If
∑

an diverges, then
∑

bn diverges

Limit Comparison
∑

an and
∑

bn with 0 < an, bn
∑

an and
∑

bn both converge or diverge

and lim
n→∞

an
bn

= L, 0 < L <∞

Integral
∑

an with an = f(n) continuous,
∑

an and

∫ ∞
M

f(x) dx both converge or diverge |S − SN | ≤
∫ ∞
N

f(x) dx

positive, decreasing eventually for n ≥M

p-Series
∞∑
n=1

1

np
Converges if p > 1, diverges if p ≤ 1

If
∑

an converges but

Absolute Convergence
∑

an If
∑
|an| converges,

∑
an converges absolutely

∑
|an| diverges, we call this

conditional convergence

Ratio
∑

an with an 6= 0 and lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L Converges (absolutely) if L < 1, diverges if L > 1 Inconclusive if L = 1

Root
∑

an with lim
n→∞

n
√
|an| = L Converges (absolutely) if L < 1, diverges if L > 1 Inconclusive if L = 1

∑
(−1)nan with an positive,

Alternating Series monotonically decreasing eventually,
∑

(−1)nan converges |S − SN | ≤ aN+1

and lim
n→∞

an = 0


