
POWER SERIES

TIM SMITS

These notes are a treatment of the theory of power series as covered in a second semester
calculus course like Math 31B at UCLA. There may be many typos – please let me know if
any are found!

1. introduction

Our study of when infinite series converge leads to the following question: when can a
function be written as an infinite series? To motivate why one would even want to do such
a thing, at its heart, calculus is about approximation. One of the questions calculus tries to
answer is how to find “good” approximations to a function f(x) locally near some point x0.
You are already familiar with one such technique: “linearize” the function by finding the
tangent line L(x) at x0, and then for values of x close to x0, L(x) is a “good” approximation
to f(x). L(x) is an approximation to f(x) by a polynomial of degree 1. What if we wanted
an approximation to f(x) by a polynomial of degree 2, or arbitrary degree n?

Since calculus is concerned with limit operations, one might ask if we could make sense
of an “infinite degree” polynomial. If so, it’s then natural to ask whether or not the above
approximations actually become equalities, which is precisely asking when can you write a
function as an infinite series! Our goal is to answer this question, and see the many powerful
application that this knowledge gives us with regards to classical problems in calculus.

2. Basic definitions and examples

Definition 2.1. A power series is an infinite series of the form F (x) =
∑∞

n=0 an(x − c)n

for variable x, some sequence {an}, and some real number c, called the center of the power
series.

Note that a power series F (x) is not necessarily a well-defined function: for some values
of x, the resulting series F (x) may either converge or diverge.

Example 2.2. Let F (x) =
∑∞

n=0 x
n, which is a power series centered at c = 0 with constant

coefficients an = 1. For each fixed value of x, the resulting infinite series is a geometric series,
and therefore converges if |x| < 1 and diverges if |x| ≥ 1. Therefore we cannot make sense
of F (x) as a function defined on R, but we can make sense of F (x) as a function defined
on (−1, 1): from the formula for the sum of a geometric series, we know that for |x| < 1,
F (x) =

∑∞
n=0 x

n = 1
1−x .

The first question we must answer then if we wish to make sense of power series, is when
can we determine a domain that makes a power series a well-defined function? Since for
each fixed value of x a power series is just an infinite series, we can answer this using the
theory we’ve already developed. A bit of work will show that power series have the following
behavior:
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Theorem 2.3 (Convergence of power series). For a power series F (x) =
∑∞

n=0 an(x− c)n,
exactly one of the following is true:

� There is a unique non-negative real number R such that F (x) converges absolutely
for |x− c| < R and diverges for |x− c| > R.

� F (x) converges absolutely for all x ∈ R.

Definition 2.4. The radius of convergence R of a power series F (x) is defined as the
number R in the above theorem. If F (x) converges absolutely for all x, we define R = ∞.
The interval of convergence is the set of all values such that F (x) converges.

How can we find the radius of convergence of a power series? Assuming we can apply the
ratio test to the infinite series

∑∞
n=0 an(x − c)n, we see that the series converges absolutely

if limn→∞ |an+1(x−c)n+1

an(x−c)n | = limn→∞ |an+1

an
||x− c| < 1, and diverges if limn→∞ |an+1

an
||x− c| > 1.

If L = limn→∞ |an+1

an
| is finite and non-zero, this says that the infinite series F (x) converges

absolutely if L|x−c| < 1 and diverges if L|x−c| > 1, i.e. converges absolutely for |x−c| < 1/L
and diverges if |x − c| > 1/L, so that the above theorem says R = 1/L. If L = 0, then
L|x− c| = 0 for any value of x, so therefore F (x) converges absolutely for any such choice of
x, which says R =∞. If L is infinite, then for any value of x 6= c, limn→∞ |an+1

an
||x− c| =∞,

so F (x) diverges, and for x = c we see limn→∞ |an+1

an
||x− c| = 0, i.e. F (x) converges only at

x = c, so R = 0. We can sum this up in the following:

Theorem 2.5. Assume that L = limn→∞ |an+1

an
| exists. The radius of convergence of the

power series F (x) =
∑∞

n=0 an(x− c)n is given by R = 1
L

, where this is interpreted as R = 0
if L =∞ or R =∞ if L = 0.

The theorem on the convergence behavior of power series tells us that if R <∞, a power
series must converge in the interval (c−R, c+R), and diverges in (−∞, c−R)∪ (c+R,∞).
However, the theorem tells us nothing about what happens at the endpoints x = c−R and
x = c + R. To check if a power series converges for these values of x, this must be done
manually using the usual convergence tests for infinite series.

Example 2.6. In the previous example, we determined the power series F (x) =
∑∞

n=0 x
n

converges if |x| < 1 and diverges if |x| ≥ 1 using properties of geometric series. In other
words, the radius of convergence is R = 1 and the interval of convergence is (−1, 1). We can

also determine this using the ratio test: F (x) converges absolutely if limn→∞ |x
n+1

xn
| = |x| < 1

and diverges if |x| > 1, so R = 1. If x = 1, then F (1) =
∑∞

n=0 1 diverges, and similarly
F (−1) =

∑∞
n=0(−1)n also diverges, so the interval of convergence is (−1, 1).

Example 2.7. Set F (x) =
∑∞

n=0 n!xn. What is the interval of convergence of F (x)? Using

the ratio test, we find that L = limn→∞
(n+1)!
n!

= limn→∞(n + 1) =∞. This says R = 0, and
so F (x) converges only at x = 0.

Example 2.8. Set F (x) =
∑∞

n=2
1

ln(n)
(x− 1)n. What is the interval of convergence of F (x)?

Using the ratio test, F (x) converges absolutely if limn→∞ |
1

ln(n+1)
(x−1)n+1

1
ln(n)

(x−1)n | = limn→∞
ln(n)

ln(n+1)
|x−

1| < 1 and diverges if limn→∞
ln(n)

ln(n+1)
|x − 1| > 1. Since limn→∞

ln(n)
ln(n+1)

= 1, this says F (x)

converges absolutely if |x − 1| < 1 and diverges if |x − 1| > 1, i.e. R = 1. We then see
that F (x) converges in the interval (0, 2). What happens at the endpoints? At x = 0, we
have F (0) =

∑∞
n=2

1
ln(n)

(−1)n, which converges by the alternating series test. At x = 2,
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F (1) =
∑∞

n=2
1

ln(n)
. Since ln(n) < n for all n, 1

n
< 1

ln(n)
so that

∑∞
n=2

1
ln(n)

diverges by a

direct comparison. Therefore F (1) diverges, and the interval of convergence of F (x) is given
by [0, 2).

Example 2.9. Set F (x) =
∑∞

n=0
(−1)nx2n
4n(n!)2

. In both of the two previous examples, we could

have computed the radius of convergence by using the previous theorem. However here the
theorem does not apply, because the power series F (x) has only even powers of x in the
sum. Therefore we need to use the ratio test to determine the radius of convergence. With

bn = (−1)nx2n
4n(n!)2

, we have | bn+1

bn
| = | (−1)

n+1x2n+2

4n+1((n+1)!)2
· 4n(n!)2

(−1)nx2n | =
x2

4(n+1)2
. Therefore, limn→∞ | bn+1

bn
| =

limn→∞
x2

4(n+1)2
= 0 for any value of x. This says R = ∞ and F (x) converges absolutely for

all x.

3. Functions defined by power series

The convergence behavior of power series says that a power series F (x) determines a well-
defined function on its interval of convergence. One reason why we care about power series
is that doing calculus with them is extremely easy:

Theorem 3.1 (Integration and differentiation of power series). Let F (x) =
∑∞

n=0 an(x− c)n

be a power series with radius of convergence R. Then for |x− c| < R, we may differentiate
and integrate the power series F (x) term by term. That is, the following hold:

� F ′(x) =
∑∞

n=0
d
dx
an(x− c)n =

∑∞
n=1 nan(x− c)n−1

�

∫
F (x) dx =

∑∞
n=0

∫
an(x− c)n dx = C +

∑∞
n=0

an
n+1

(x− c)n+1.

Furthermore, the radius of convergence remains unchanged, but the interval of convergence
of these new series may differ at the endpoints.

Example 3.2. Let F (x) =
∑∞

n=1
xn

n
. Then using the theorem for computing the radius of

convergence, we see that R = 1 and F (x) converges in (−1, 1). If x = 1, F (1) =
∑∞

n=1
1
n

diverges, and at x = −1, F (−1) =
∑∞

n=1
(−1)n
n

is a convergent alternating series. Therefore,

F (x) has interval of convergence [−1, 1). Taking a derivative says F ′(x) =
∑∞

n=1
d
dx

xn

n
=∑∞

n=1 x
n−1 =

∑∞
n=0 x

n. As previously determined, this power series has radius of conver-
gence 1 and interval of convergence (−1, 1). If we integrate F (x), we see

∫
F (x) dx =∑∞

n=1

∫
xn

n
dx =

∑∞
n=1

1
n

∫
xn dx = C +

∑∞
n=1

1
n(n+1)

xn+1. This series has radius of conver-

gence R = 1, and so converges in the interval (−1, 1). At x = −1, the series C +
∑∞

n=1
(−1)n
n(n+1)

is a convergent alternating series, and at x = 1 the series C +
∑∞

n=1
1

n(n+1)
converges by a

limit comparison with
∑∞

n=1
1
n2 . This says the interval of convergence is [−1, 1].

The above theorem tells us that functions defined by a power series are very special: they
are not only differentiable, but are infinitely differentiable (the derivative of a power series is
a power series so you can keep applying the theorem!), and they behave nicely with respect
to the operations of differentiation and integration. Naturally then, is the following: give a
function f(x), how can we determine if it can be defined by a power series on some interval?

4. Taylor Series

Suppose we have a function f(x) defined on some interval I that can be written as a
power series. That is to say, f : I → R is defined by f(x) =

∑∞
n=0 an(x− c)n for some power
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series
∑∞

n=0 an(x − c)n. It turns out the coefficients an of the power series can very easily
be determined. Plugging in x = c, all terms on the right hand side disappear except the
n = 0 term, so f(c) = a0. Since f is represented by a power series, it is differentiable, so
we may write f ′(x) =

∑∞
n=1 nan(x − c)n−1. Plugging in x = c, all terms in the right hand

side disappear except the n = 1 term, which says f ′(c) = a1. Differentiating again says
f ′′(x) =

∑∞
n=2 n(n − 1)an(x − c)n−2. Plugging in x = c, all terms in the right hand side

disappear except the n = 2 term, so f ′′(c) = 2a2 says a2 = f ′′(c)
2

. Continuing this process,

one finds that an = f (n)(c)
n!

, so that f(x) =
∑∞

n=0
f (n)(c)
n!

(x− c)n. This says that if a function
f(x) can be written as a power series, it necessarily has this special form.

Definition 4.1. Let f(x) be an infinitely differentiable function. The Taylor series of f(x)

centered at c, denoted T (x), is the power series T (x) =
∑∞

n=0
f (n)(c)
n!

(x − c)n. If c = 0, the
power series is sometimes called the MacLaurin series of f(x).

Example 4.2. What’s the Taylor series of f(x) = ex centered at c = 0? By definition,

this Taylor series is given by
∑∞

n=0
f (n)(0)
n!

xn, so we need to figure out what an arbitrary n-th

order derivative of f looks like. Luckily, f (n)(x) = ex for all n, so f (n)(0) = 1. This says the
Taylor series centered at 0 of ex is given by

∑∞
n=0

1
n!
xn.

Example 4.3. We have seen that a valid power series expansion of f(x) = 1
1−x when |x| < 1.

By the uniqueness of a power series representation, this actually says that the Taylor series
centered at c = 0 of f(x) is given by

∑∞
n=0 x

n, valid for |x| < 1. That is, 1
1−x =

∑∞
n=0 x

n for
|x| < 1.

Example 4.4. What’s the Taylor series centered at c = 0 for f(x) = sin(x)? Derivatives
of sin(x) have a simple pattern: they cycle cos(x),− sin(x),− cos(x), sin(x). If we plug in
x = 0, the pattern goes 1, 0,−1, 0, i.e. the even order derivatives at 0 are all 0 and the odd

order derivatives at 0 alternate between 1 and −1. Then
∑∞

n=0
f (n)(0)
n!

xn =
∑

n odd
f (n)(0)
n!

xn.
We can loop the sum over all odd integers by writing n = 2k + 1 and then letting k vary

from 0 to ∞, i.e.
∑

n odd
f (n)(0)
n!

xn =
∑∞

k=0
f (2k+1)(0)
(2k+1)!

x2k+1 =
∑∞

k=0
(−1)k
(2k+1)!

x2k+1.

What we determined at the beginning of the section is that if a function can be written
as a power series centered at some point c, that power series must be its Taylor series. We
have not said that a function is equal to its Taylor series. Indeed, this is false:

Example 4.5. Consider the function f defined by f(x) =

{
e−1/x

2
x 6= 0

0 x = 0
. Through quite a

lot of (difficult) work, one can show that this function has the following unusual properties:
f is infinitely differentiable, and f (n)(0) = 0 for all n ≥ 0. The Taylor series of f(x) centered
at c = 0 is then given by T (x) = 0, which obviously is not the same as f(x).

To finish off the section, we give some examples of how one goes about computing Taylor
series. The take away from these examples should all be the same: to compute a Taylor
series, perform operations on known power series to arrive at an answer. Do not try and
work with the definition!

Example 4.6. Let’s compute the Taylor series of f(x) = x2

(1−x)3 centered at c = 0. We start

with the known Taylor series 1
1−x =

∑∞
n=0 x

n, valid for |x| < 1. If we differentiate once, we
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find 1
(1−x)2 =

∑∞
n=1 nx

n−1, and if we differentiate again we see 2
(1−x)3 =

∑∞
n=2 n(n− 1)xn−2.

This says 1
(1−x)3 = 1

2

∑∞
n=2 n(n − 1)xn−2, so multiplying by x2 says x2

(1−x)3 = x2

2

∑∞
n=2 n(n −

1)xn−2 = 1
2

∑∞
n=2 n(n− 1)xn. This expansion is still valid for |x| < 1 (differentiating doesn’t

change the radius of convergence!). Since we have found a power series representing f(x) in
some interval, this forces it to be the Taylor series of f(x) by uniqueness.

Example 4.7. Similarly, by integrating the Taylor series of 1
1−x , we can find the Taylor

series of ln(1− x). We have 1
1−x =

∑∞
n=0 x

n, valid for |x| < 1. Integrating says ln(1− x) =

C +
∑∞

n=0
xn+1

n+1
. To figure out C, plug in x = 0: we then have ln(1) = C, so C = 0. It’s easy

to see we pick up convergence at the end point x = −1, so we have ln(1 − x) =
∑∞

n=0
xn+1

n+1

for x ∈ [−1, 1). Since we have found a power series representation for our function, it must
be its Taylor series.

Example 4.8. Let’s compute the Taylor series of f(x) = 1
1−x centered at c = 4. We know

that 1
1−u =

∑∞
n=0 u

n is a valid power series expansion when |u| < 1. Instead of directly
computing derivatives, we can do a clever trick to find the Taylor series. We know that the
Taylor series of f(x) centered at 4 is of the form

∑∞
n=0 an(x − 4)n for some coefficients an,

so if we can find such a power series, uniqueness forces it to be the Taylor series of f(x). To
do so, we will perform a substitution and use the above formula to make an (x − 4)n term
appear in the sum. Write 1

1−x = 1
1−(x−4+4)

= 1
−3−(x−4) = −1

3
1

1−(−x−4
3

)
. Set u = −x−4

3
. Then

the above says 1
1−x = −1

3

∑∞
n=0(−

x−4
3

)n =
∑∞

n=0(−1)n+1 (x−4)n
3n+1 , which is valid for |x−4

3
| < 1,

i.e. |x− 4| < 3. Since we have found a power series of f centered at 4, it must be its Taylor
series.

Example 4.9. Let’s find the Taylor series of f(x) = 2
1−2x−

1
1−x centered at c = 0. Similarly to

above, we use the expansion 1
1−u =

∑∞
n=0 u

n for |u| < 1. Writing each term as a power series,

we have 2
1−2x−

1
1−x = 2

∑∞
n=0(2x)n−

∑∞
n=0 x

n =
∑∞

n=0 2n+1xn−
∑∞

n=0 x
n =

∑∞
n=0(2

n+1−1)xn,
which is only valid when both series converge. Since the first series convergences only for
|x| < 1/2, we see this power series expansion is only valid for |x| < 1/2. Since we have found
a power series expansion of f that’s valid in some interval around 0, this says it must be the
Taylor series of f .

Example 4.10. Let’s find the Taylor series of f(x) =
∫ x
0
et

2−1
t

dt centered at c = 0. Note
that it is not at all possible to compute an anti-derivative of the integrand – the only
method here is to integrate its Taylor series. The Taylor series of et centered at 0 is given

by et =
∑∞

n=0
tn

n!
which is valid for all t, so et

2
=

∑∞
n=0

(t2)n

n!
=

∑∞
n=0

t2n

n!
. This series looks

like 1 + t2 + t4

2
+ . . ., so et

2 − 1 = t2 + t4

2
+ . . . =

∑∞
n=1

t2n

n!
, which is a valid expansion for

all t. Dividing through by t then says et
2−1
t

= 1
t

∑∞
n=1

t2n

n!
=

∑∞
n=1

t2n−1

n!
. We then have∫ x

0
et

2−1
t

dt =
∫ x
0

∑∞
n=1

t2n−1

n!
dt =

∑∞
n=1

∫ x
0
t2n−1

n!
dt =

∑∞
n=1

x2n

(2n)n!
, and further this expression

is valid for all x. Since we have found a power series representation of f(x), this must be its
Taylor series.

Example 4.11. Let’s find the Taylor series of f(x) = tan−1(x) centered at c = 0. We
know that d

dx
tan−1(x) = 1

1+x2
, so let’s start by finding the Taylor series of this function

instead, which is much easier. Starting with 1
1−x =

∑∞
n=0 x

n, we have 1
1+x2

=
∑∞

n=0(−1)nx2n
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by replacing x with −x2. Integrating then says tan−1(x) = C +
∑∞

n=0(−1)n x
2n+1

2n+1
. Since

tan−1(0) = 0, we find C = 0, and so tan−1(x) =
∑∞

n=0(−1)n x
2n+1

2n+1
. The radius of convergence

is 1 because we did not do any operations to change it from our starting series. Testing
the endpoints, the series converges at both x = 1,−1 by the alternating series test, and
so the power series representation is valid on [−1, 1]. Since we have found a power series
representation of f(x), this must be its Taylor series.

5. Polynomial Approximations

Determining when a function is equal to its Taylor series is quite a subtle question. In
fact, it’s also quite hard: in general, there is not much we can say. At the very minimum
however, we can say the following. For each fixed value of x, consider the n-th partial sum

Tn(x) of the Taylor series T (x), that is Tn(x) =
∑n

k=0
f (k)(c)
k!

(x−c)k. Saying that f(x) = T (x)
is the same as saying that Tn(x) → f(x) as n → ∞. If we set Rn(x) = f(x) − Tn(x), this
says that if f(x) = T (x), if and only if Rn(x)→ 0 as n→∞.

Theorem 5.1 (Representation by Taylor series). An infinitely differentiable function f(x)
can be written as a power series centered at c if and only if the n-th order remainder term
Rn(x) = f(x)− Tn(x) satisfies limn→∞Rn(x) = 0 for all x ∈ I.

To reiterate for emphasis, this theorem is saying very little: we merely translated the
statement that f(x) = T (x) into a statement about its partial sums via the definition of
convergence of an infinite series. Explicitly computing the remainder term Rn(x) is generally
a hopeless task. Therefore if one wants to check using the above criterion that f(x) can be
represented by a power series, we need to come up with a way of estimating the remainder
term Rn(x) if we want to see if it tends to 0.

Definition 5.2. The n-th order Taylor polynomial of f(x) centered at c is the n-th partial

sum of its Taylor series, Tn(x) =
∑n

k=0
f (k)(c)
k!

(x− c)k.

Example 5.3. Let’s compute the 4-th order Taylor polynomial of f(x) = xex
2

centered at

c = 0. By definition, this is given by f(0) + f ′(0)x + f ′′(0)
2

x2 + f ′′′(0)
6

x3 + f (4)(0)
24

x4. One such
approach is to just calculate all the relevant derivatives and plug in x = 0. It’s an easy compu-
tation to check that f ′(x) = (2x2 +1)ex

2
, f ′′(x) = (4x3 +6x)ex

2
, f ′′′(x) = (8x4 +24x2 +6)ex

2

and f (4)(x) = (16x5 + 80x3 + 60x)ex
2
. Plugging in 0 then gives T4(x) = x + x3. An-

other way we could have done this computation is as follows. T4(x) is the 4-th degree
polynomial that comes from the Taylor series of f(x), so if we compute it’s Taylor se-
ries, we can chop off terms to get the Taylor polynomial. Since ex =

∑∞
n=0

xn

n!
, we have

xex
2

= x
∑∞

n=0
(x2)n

n!
=

∑∞
n=0

x2n+1

n!
= x+ x3 + x5

2
+ . . .. We recover T4(x) by chopping off the

sum at the degree 4 term (of which we see there is none), so T4(x) = x + x3.

This example illustrates several things: using Taylor series to compute Taylor polynomials
is significantly faster, that the n-th degree Taylor polynomial doesn’t even need to have degree
n, and that two Taylor polynomials could be equal (here we have T3(x) = T4(x)).

Example 5.4. Let f(x) = x4 + 1
2
x2 − 1. Then the 4-th order Taylor polynomial of f(x)

centered at c = 0 is just x4 + 1
2
x2− 1. This is because f(x) is already a degree 4 polynomial.
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The remainder term Rn(x) tells you how far off from f(x) the approximation Tn(x) is.
Determining how “good” of an approximation Taylor polynomials are is one of the major
theorems of calculus!

Theorem 5.5 (Taylor’s Theorem). Let f be a function such that f (n+1)(x) exists and is
continuous. Suppose there is a constant Kn+1 such that |f (n+1)(z)| ≤ Kn+1 for all z between

x and c. Then |Rn(x)| = |f(x)− Tn(x)| ≤ Kn+1

(n+1)!
|x− c|n+1.

Taylor’s inequality tells us that the size of the remainder term Rn(x) depends on the size
of the (n+1)-st derivative of f . This makes it more explicit why it’s hard to show a function
can be written as a power series: computing arbitrary order derivatives is generally not easy.

Example 5.6. Consider the Taylor expansion of ex centered at c = 0. Since dn

dxn
ex = ex

for all n ≥ 0, Taylor’s theorem says that for any value of x and any n ≥ 0, we have

|Rn(x)| ≤ e|x|

(n+1)!
|x|n+1 because the maximum value of ex on the interval [−x, x] happens at

whichever endpoint is positive. Taking a limit as n → ∞ then shows that Rn(x) → 0, and
so this means the Taylor series of ex converges to ex, so we get an equality ex =

∑∞
n=0

1
n!
xn.

Some calculus books give this as the definition of the exponential function. In particular,
we get the numerical identity e = 1 + 1 + 1

2
+ 1

6
+ . . ..

As a first application, we can handle one simple case of when a function can be written
as a power series: let T (x) be the Taylor series of f(x) centered at c, and suppose that
T (x) has radius of convergence R. If there is some number K such that |f (n)(x)| ≤ K
for all n and all x such that |x − c| < R, then applying Taylor’s inequality says that
|Rn(x)| ≤ K

(n+1)!
|x − c|n+1 ≤ K

(n+1)!
Rn+1. Taking n → ∞ says that |Rn(x)| → 0, so that we

have proved the following:

Theorem 5.7. Let f be an infinitely differentiable function. Let T (x) be the Taylor series of
f(x) centered at c with radius of convergence R. Suppose there is some constant K such that
|f (n)(x)| ≤ K for all n and all x such that |x− c| < R. Then f(x) = T (x) for |x− c| < R.
That is to say, such an f has a power series representation.

Example 5.8. With f(x) = sin(x), we see that |f (n)(x)| ≤ 1 for all n ≥ 0. The above
theorem says that the Taylor series of sin(x) converges to sin(x), and so from our prior

example we have an actual equality sin(x) =
∑∞

k=0(−1)k x2k+1

(2k+1)!
, valid for all x because the

series has infinite radius of convergence. We can compute the Taylor series of cos(x) by taking

the derivative of the Taylor series of sin(x). Doing so, we find cos(x) =
∑∞

k=0
(−1)k
(2k)!

x2k, which

is again valid for all x, so we have the equality cos(x) =
∑∞

k=0
(−1)k
(2k)!

x2k.

We now give some examples of how the error bound inequality can be used to quantify
how “good” a polynomial approximation is.

Example 5.9. Suppose f(x) = e−x and we have T3(x) centered at c = 1. How good of
an approximation to f(1.1) is T3(1.1)? The error bound formula says |f(1.1) − T3(1.1)| ≤
K4

4!
|.1|4, where K4 is an upper bound of |f (4)(x)| on the interval [1, 1.1]. Since |f (4)(x)| =

f (4)(x) = e−x, K4 is just an upper bound of e−x on the interval [1, 1.1]. The function e−x

is strictly decreasing on this interval, so it attains it’s maximal value on the interval at the
left endpoint x = 1. This says the maximal value is given by 1

e
, so we can take K4 = 1

e
.
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Although this is a perfectly valid choice of K4, if the point is to do an approximation by
hand, it’s completely useless to choose a value of K4 that would involve e, since that’s
another thing we have to approximate. Since e ≈ 2.718, in particular we have e ≥ 5

2
so

1
e
≤ 2

5
. We will then instead take K4 = 2

5
, the trade off being the error estimate will be a

little bit worse, but computable by hand. Plugging into the error bound formula, this says

|f(1.1)− T3(1.1)| ≤ 2/5
24

(.1)4 = 1
60·104 ≈ .000001. This says if we want to estimate e−1.1, that

T3(1.1) is a very good estimate. Indeed, we can compute that T3(x) centered at c = 1 is given
by T3(x) = 1

e
− 1

e
(x−1)+ 1

2e
(x−1)2− 1

6e
(x−1)3, so that T3(1.1) = 1

e
− 1

10e
+ 1

200e
− 1

6000e
= 5429

6000e
.

If we use the approximation e ≈ 2.718, then T3(1.1) ≈ .3329, while f(1.1) ≈ .33287 (we
obviously lost a bit more precision by having to approximate e).

Example 5.10. Suppose f(x) = xex
2
. Earlier, we computed that T3(x) = x+x3. How good

of an approximation is this to f(x)? For an arbitrary value x > 0, the error bound formula
says |f(x) − T3(x)| ≤ K4

4!
x4, where K4 is an upper bound of |f (4)(z)| on the interval [0, x].

We also computed that g(z) = |f (4)(z)| = f (4)(z) = (16z5 + 80z3 + 60z)ez
2
. By definition,

K4 is an upper bound of this function on the interval [0, x]. The function g(z) is strictly

increasing, because g′(z) = (32z6 +240z4 +360z2 +60)ez
2 ≥ 0 when z is in the interval [0, x].

In particular, this says g(z) attains it’s maximal value at the right endpoint of this interval,

i.e. at z = x. Therefore, we may choose K4 = (16x5 + 80x3 + 60x)ex
2
. If we plug this in,

this says |f(x)− T3(x)| ≤ (16x5+80x3+60x)ex
2

24
x4 = (16x9+80x7+60x5)ex

2

24
.

This says at worst, the error grows at the same rate as the function (16x9+80x7+60x5)ex
2

24
. Since

limx→0
(16x9+80x7+60x5)ex

2

24
= 0 (and it goes to 0 quite quickly), for values of x close to 0, the

approximation will be quite good. For example, using a calculator we find |f(.1)−T3(.1)| ≤
.00002559, so T3(.1) = .101 approximates f(.1) to within 4 decimal places. Indeed, we see

f(.1) ≈ .101005. However, as x → ∞, we have (16x9+80x7+60x5)ex
2

24
= ∞, and moreover,

this function is growing extremely quickly (faster than an exponential function!). This says
for values of x far from 0, the error bound will be terrible. For example, at x = 1, we see
|f(1)−T3(1)| ≤ 13e

2
≈ 17.668. This an absolutely useless estimate, because we knew f(1) = e

and T3(1) = 2, so in actuality |f(1)− T3(1)| ≈ .718!

Example 5.11. Suppose we want to compute ln(1.1) to within 4 decimal places of accuracy.
How can we do this? One such approach using what we have done so far is to figure out how
many terms in the Taylor series of ln(1.1) are necessary in order for the N -th Taylor poly-
nomial TN(x) to approximate to within that level of error by using the error bound formula.
In order for the error bound formula to remain useful, we must make sure that we center
TN(x) somewhere close to 1.1. One such approach is to center it at c = 1, so that phrased
mathematically, we want to find N such that |f(1.1) − TN(1.1)| ≤ 1

104
, where f(x) = ln(x)

and TN(x) is centered at c = 1.

The error bound formula says |f(1.1) − TN(1.1)| ≤ KN+1

(N+1)!
(.1)N+1, so if we make this

smaller than 1
104

, then we’re good. In order to do this, we need to figure out how to pick

KN+1. By definition, KN+1 is an upper bound of |f (N+1)(x)| on the interval [1, 1.1]. First,
we compute an arbitrary order derivative of f(x). We have f(x) = ln(x), f ′(x) = x−1,
f ′′(x) = −x−2, f ′′′(x) = 2x−3, f (4)(x) = −6x−4, and so on. Continuing the pattern, we see
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that f (N)(x) = (−1)N+1(N − 1)!x−N , so that |f (N+1)(x)| = N !x−(N+1). In particular, this
function is decreasing (because the derivative is always negative), so that it’s maximal value
happens at the left endpoint x = 1. Plugging this in, the maximum value of N !x−(N+1) is
just N !, so we may take KN+1 = N !. We then need to solve the inequality KN+1

(N+1)!
1

10N+1 ≤ 1
104

.

Plugging in our choice of KN+1, this is the same thing as solving 1
(N+1)10N+1 ≤ 1

104
, i.e.

104 ≤ (N + 1)10N+1. We see that N = 3 is the smallest such choice of N that works, so we
only need to take 3 terms in the Taylor series to get the desired level of accuracy.

If we wanted to then approximate ln(1.1), we can then easily compute T3(x) = (x− 1)−
1
2
(x− 1)2 + 1

3
(x− 1)3, so that T3(1.1) = 1

10
− 1

200
+ 1

3000
= 143

1500
≈ .09533, and indeed, this is

a good approximation to ln(1.1) ≈ .09531.

6. Applications of Taylor Series

Taylor series are the ultimate tool of calculus – they can be used to answer almost all
classical calculus problems you might be interested in solving. In particular, we will see how
Taylor series can be used to do the following:

� Compute limits.
� Compute derivatives at a point.
� Compute the value of an infinite series.
� Approximate the value of a definite integral when the integrand does not have an

anti-derivative we can write down.
� Analyze the growth rate of functions, making it easier to apply the limit comparison

test.

Example 6.1. Suppose we want to compute limx→0
sin(x4)−x4
(x4− 1

6
x3)4

. If you try and use L’Hopital’s

rule, you’ll very quickly convince yourself that it will be extremely difficult. How else can
we compute this limit? One approach is replace the numerator with it’s Taylor series, and
do the resulting limit computation. We have sin(x) =

∑∞
n=0(−1)n x2n+1

(2n+1)!
, so sin(x4) =∑∞

n=0(−1)n x8n+4

(2n+1)!
= x4 − 1

6
x12 + . . ., thus sin(x4) − x4 =

∑∞
n=1(−1)n x8n+4

(2n+1)!
= −1

6
x12 +

1
120

x20 + . . ., so that limx→0
sin(x4)−x4
(x− 1

6
x3)4

= limx→0
− 1

6
x12+ 1

120
x20+...

(x4− 1
6
x3)4

. Dividing the numerator and

denominator through by x12, we find limx→0
− 1

6
x12+ 1

120
x20+...

(x4− 1
6
x3)4

= limx→0
− 1

6
+ 1

120
x8+...

(x− 1
6
)4

= −63 =

−216.

Example 6.2. Let f(x) = ex
2
. Suppose we wanted to calculate the 1000-th derivative of

f at 0, f (1000)(0). It’s obviously impossible to calculate 1000 derivatives by hand, and no
computer will be able to calculate the derivative explicitly. How can we do this? The easiest
way is to compute the Taylor series of f(x) centered at 0, which encodes information about

all derivatives of f at 0. We have ex =
∑∞

n=0
xn

n!
, so that ex

2
=

∑∞
n=0

x2n

n!
. In particular, the

definition of the Taylor series says ex
2

=
∑∞

n=0
f (n)(0)
n!

xn, so to recover the value of f (1000)(0),
we need to look at the coefficient of x1000 in the Taylor series of f(x). We see that the

coefficient is just 1
500!

, so by comparing coefficients in these two series we find 1
500!

= f (1000)(0)
1000!

,

which says f (1000)(0) = 1000!
500!

.

Example 6.3. The series
∑∞

n=0
2n+1
4n

converges by doing a direct comparison test with a
geometric series. As it turns out, we can actually compute the value of this sum. The way
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we do this is as follows: write
∑∞

n=0
2n+1
4n

=
∑∞

n=0(2n + 1)(1
4
)n. Then the value of this sum

is f(1/4), where f(x) =
∑∞

n=0(2n + 1)xn. If we can find a function whose Taylor series
centered at 0 is equal to f(x), then we can find the exact value of the series. It’s a quick
check to see that f(x) converges for |x| < 1, so we can write f(x) = 2

∑∞
n=0 nx

n +
∑∞

n=0 x
n

for such values. We know that the second series is the Taylor series of 1
1−x . What about

the first series? The key observation is that this series is “almost” what you would get if
you differentiated the second series. In fact, the only difference is a factor of x, so we have∑∞

n=0 nx
n = x d

dx

∑∞
n=0 x

n = x d
dx

1
1−x = x

(1−x)2 . This tells us that f(x) = 2x
(1−x)2 + 1

1−x , for

|x| < 1. Plugging in x = 1
4

then says f(1/4) =
∑∞

n=0
2n+1
4n

= 20
9

.

Example 6.4. At some point in your life, someone has probably mentioned that the function
f(x) = e−x

2
does not have an anti-derivative that you can write down. However, functions

that look like this are of fundamental importance in fields relating to mathematics, for exam-
ple, f(x) = 1√

2π
e−x

2/2 is what is known as the “standard normal distribution” in statistics.

If you have taken such a course before, then you know that computing definite integrals of
this function is extremely important. How can we do it? As an example, we’ll approximate∫ 1

−1
1√
2π
e−x

2/2 dx. A statistical interpretation of this integral is that if you have a population

that is normally distributed, this integral computes the proportion of the population that
lies within 1 standard deviation from the mean.

First, we’ll find a Taylor series of the integrand centered at 0. This is easy to do: we

know ex =
∑∞

n=0
xn

n!
, so e−x

2/2 =
∑∞

n=0
(−x2/2)n

n!
=

∑∞
n=0(−1)n x2n

2nn!
. Integrating this se-

ries then says
∫ 1

−1
1√
2π
e−x

2/2 dx = 1√
2π

∫ 1

−1
∑∞

n=0(−1)n x2n

2nn!
dx = 1√

2π

∑∞
n=0

∫ 1

−1(−1)n x2n

2nn!
dx =

1√
2π

∑∞
n=0(−1)n 2

(2n+1)2nn!
. In order to approximate the sum, we can use the remainder es-

timate from the alternating series test. First, let’s pick a desired level of accuracy, say, 4
decimal places. If we let S denote the value of the series, then the alternating series test
says |S − SN | ≤ aN+1. Then we would like to find N such that aN+1 ≤ 1

104
, that is, solve

2
(2N+3)2N+1(N+1)!

≤ 1
104

, which is equivalent to solving 20000 ≤ (2N + 3)2N+1(N + 1)!. We see

that N = 4 is the smallest value of N that works, so we arrive at the desired accuracy by
computing S4. Using a calculator to do so, we then conclude that

∫ 1

−1
1√
2π
e−x

2/2 dx ≈ .6827.

Example 6.5. Suppose we wanted to know if
∑∞

n=1(1/n−tan−1(1/n)) converges or diverges.
In order to come to a conclusion, we need to understand how the summand grows as n→∞.
The 3rd order Taylor polynomial of tan−1(x) centered at x = 0 is tan−1(x) ≈ x− 1

3
x3. Since

1/n → 0 as n → ∞, this means that tan−1(1/n) ≈ 1
n

+ 1
3n3 , so as n → ∞ we see that

1/n− tan−1(1/n) ≈ 1
3n3 . Therefore, our original sum should converge.

To formally show this, we’ll examine
∑∞

n=1 |1/n − tan−1(1/n)| instead (because showing
the terms in our original sum are positive so we can use a comparison test is rather tricky!).
By Taylor’s theorem, we have tan−1(x) = x − 1

3
x3 + R3(x), where |R3(x)| ≤ Cx4 for some

constant C. Therefore, tan−1(1/n) = 1
n
− 1

3n3 + R3(1/n), with |R3(1/n)| ≤ C
n4 . We have

limn→∞
|1/n−tan−1(1/n)|

1/(3n3)
= limn→∞

|1/(6n3)−R3(1/n)|
1/(6n3)

≤ 1 + limn→∞
|R3(1/n)|
1/(6n3)

≤ 1 + limn→∞
6C
n

=

1. Similarly, we also see that limn→∞
|1/n−tan−1(1/n)|

1/(3n3)
≥ limn→∞

1/n−tan−1(1/n)
1/(3n3)

= 1, and
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so we conclude that limn→∞
|1/n−tan−1(1/n)|

1/(3n3)
= 1. Therefore by the limit comparsion test,∑∞

n=1 |1/n− tan−1(1/n)| converges, and so the original series does too.


