
Math 31B
Integration and Infinite Series

Final Exam

Directions: Do the problems below. You have 180 minutes to complete this
exam. You may use a basic calculator without graphing or symbolic calculus
capabilities. Show all your work. Write full sentences when necessary. If you
need more space for scratch work, use the extra pages provided. DO NOT

WRITE ON THE BACK OF THE PAGE.

Name:

UID:

Question Points Score

1 9

2 8

3 11

4 10

5 8

6 13

7 10

8 8

9 12

10 11

Total: 100



Formula Sheet

Trig Identities

� sin2(x) + cos2(x) = 1

� tan2(x) + 1 = sec2(x)

� sin(2x) = 2 sin(x) cos(x)

� cos(2x) = cos2(x) − sin2(x) = 2 cos2(x) − 1 =
1− 2 sin2(x)

� sin2(x) = 1−cos(2x)
2

� cos2(x) = 1+cos(2x)
2

Derivatives

�
d
dxb

x = bx ln(b)

�
d
dx sin−1(x) = 1√

1−x2

�
d
dx tan−1(x) = 1

1+x2

�
d
dx sec−1(x) = 1

|x|
√
x2−1

Integrals

�

∫
u dv = uv −

∫
v du

�

∫
1
x dx = ln |x|+ C

�

∫
tan(x) dx = ln | sec(x)|+ C

�

∫
sec(x) dx = ln | sec(x) + tan(x)|+ C

Numerical Integration

� MN = ∆x(f(c1) + f(c2) + . . . + f(cN )), ci mid-
point of [xi−1, xi].

� TN = 1
2∆x(y0 + 2y1 + 2y2 + . . . + 2yN−1 + yN ),

yi = f(xi).

� SN = 1
3∆x(y0+4y1+2y2+. . .+4yN−3+2yN−2+

4yN−1 + yN ), yi = f(xi).

� Error(MN ) ≤ K2(b−a)3
24N2

� Error(TN ) ≤ K2(b−a)3
12N2

� Error(SN ) ≤ K4(b−a)5
180N4

K2 and K4 are upper bounds of |f ′′(x)| and |f (4)(x)| on the interval [a, b] respectively.

Infinite Series

�
1

1−x =
∑∞
n=0 x

n for x ∈ (−1, 1)

� ex =
∑∞
n=0

1
n!x

n for all x ∈ R

� sin(x) =
∑∞
n=0

(−1)n
(2n+1)!x

2n+1 for all x ∈ R

� Taylor expansion of f(x) centered at c:∑∞
n=0

f(n)(c)
n! (x− c)n

� |f(x)− TN (x)| = |RN (x)| ≤ KN+1

(N+1)! |x− c|
N+1

� |S − SN | ≤ aN+1 for S =
∑∞
n=0(−1)nan

� |S − SN | ≤
∫∞
N
f(x) dx for S =

∑∞
n=0 f(n)

KN+1 is an upper bound of |f (N+1)(z)| on the interval between x and c.
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1. (9 pts.) True/False. Give short justifications for all your answers to receive full credit, including a
counterexample if the statement is false.

(a) (3 pts.) True/False: If
∑∞
n=0 an converges then

∑∞
n=0(−1)nan converges.

Solution: False; For example, take an = (−1)n
n+1 . Then

∑∞
n=0 an is a convergent alternating series,

but
∑∞
n=0(−1)nan diverges by comparison with the harmonic series.

(b) (3 pts.) True/False: If an is the n-th partial sum of
∑∞
n=0 bn and limn→∞ an = 1, then

∑∞
n=0 bn

diverges.

Solution: False; by definition, this would mean that
∑∞
n=0 bn = 1, and therefore converges.

(c) (3 pts.) True/False: The trapezoidal estimate T3 overestimates
∫ 3

0
f(x) dx for the function f(x) below.

Solution: True as seen from the drawing.
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2. (8 pts.) Short answer. Answer the following questions. Justify your answers unless otherwise stated.

(a) (3 pts.) If limn→∞ an = 2, what is the interval of convergence of
∑∞
n=0 anx

n?

Solution: The condition means limn→∞ |an+1

an
| = 1 so by the ratio test, R = 1. At both x = 1 and

x = −1 the general term does not tend to 0 and so the series
∑∞
n=0 an and

∑∞
n=0(−1)nan diverge by

the divergence test. Therefore, the interval of convergence is (−1, 1).

(b) (2 pts.) What is the interval of convergence of

∞∑
n=1

xn

n
?

Solution: [−1, 1). At x = −1 the convergence follows from the alternating series test, and x = 1
yields the harmonic series.

(c) (3 pts.) Give an example of a power series with interval of convergence [7, 11).

Solution: The information provided says the power series must be centered at 9 and have radius of
convergence 2. Modifying the series in the previous problem,

∑∞
n=0

1
n2n (x− 9)n works.
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3. (11 pts.)

(a) (8 pts.) Let

f(x) =

∞∑
n=0

tan−1(n)

1 + n2
(x− 1)2n

Determine the interval of convergence of f(x). Justify the behavior at the endpoints carefully.

Solution: Running the ratio test, we need limn→∞
arctan(n+1)
1+(n+1)2 ·

1+n2

arctan(n) |x − 1|2 < 1. We have

limn→∞
arctan(n+1)
1+(n+1)2 ·

1+n2

arctan(n) = (limn→∞
arctan(n+1)
arctan(n) )·(limn→∞

1+n2

1+(n+1)2 ) = 1 since clearly limn→∞
1+n2

1+(n+1)2 =

1 and limn→∞
arctan(n+1)
arctan(n) = 1 since both numerator and denominator tend to π/2. This says we need

|x− 1|2 < 1, so R = 1 and we converge inside (0, 2). At both endpoints the series is
∑∞
n=0

arctan(n)
1+n2 ,

and
∑∞
n=1

arctan(n)
1+n2 ≤

∑∞
n=1

π/2
n2 < ∞, so the sum converges by direct comparison. This says the

interval of convergence is [0, 2].

Alternatively, one could do the integral test on
∑∞
n=0

tan−1(n)
1+n2 and directly compute

∫∞
0

tan−1(x)
1+x2 dx

to see it converges.

(b) (3 pts.) Compute the exact values of f (2023)(1) and f (2024)(1).

Solution: Compare coefficients with the general formula for the Taylor series. We have f(2023)(1)
2023! = 0

since there is no (x− 1)2023 term in the sum, so f (2023)(1) = 0. Similarly, f(2024)(1)
2024! = arctan(1012)

1+10122 , so

f (2024)(1) = 2024! arctan(1012)
1+10122
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4. (10 pts.) By starting with the list of known Maclaurin series on the formula sheet and performing the
appropriate operations, find the Maclaurin series of

f(x) =

∫ x

0

t3 − ln(1 + t3)

t2
dt

and state the radius of convergence. To receive full credit, you must write your answer using summation
notation. Make sure you show all your work!

Solution: Start with 1
1−t =

∑∞
n=0 t

n. Replacing t with −t gives 1
1+t =

∑∞
n=0(−1)ntn, so integrating

results in ln(1 + t) =
∑∞
n=0

(−1)ntn+1

n+1 . Replacing t with t3 gives ln(1 + t3) =
∑∞
n=0

(−1)nt3n+3

n+1 . Subtracting

and dividing by t2 gives t3−ln(1+t3)
t2 =

∑∞
n=1

(−1)n+1t3n+1

n+1 , and integrating gives f(x) =
∑∞
n=0

(−1)n+1x3n+2

(n+1)(3n+2) .

The radius of convergence is 1, as none of the operations we did at any step changed the radius of
convergence (because |t|3 < 1 if and only if |t| < 1, so the substitution didn’t change the radius of
convergence).
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5. (8 pts.) Approximate

∫ 1/4

0

tan−1(4x2) dx to within an error of 1
103 . You may use either infinite series or

numerical integration, but make sure you carefully justify why your approximation has the correct level
of accuracy, and show all your work. You do not need to fully simplify your end approximation.

Solution: The midpoint rule is probably the fastest way to proceed. With f(x) = arctan(4x2), it’s easy

to compute f ′′(x) = 8−384x4

(1+16x4)2 . This function is quite clearly decreasing on [0, 1/4] as the numerator only

gets smaller and the denominator only gets bigger as x gets larger. This has maximum value of 8 at x = 0,
and so we can pick K2 = 8. We then want to find N such that 8

24N2 ( 1
4 )3 ≤ 1

103 , and by inspection N = 3
works. We then take 3 sub-intervals for our approximation, and so from the formula for the midpoint rule,
our approximation is 1

12 (f(1/24) + f(1/8) + f(5/24)).

Alternatively, write tan−1(x) =
∑∞
n=0

(−1)nx2n+1

2n+1 (which can be found by integrating 1
1+x2 , if you don’t

have this memorized), so tan−1(4x2) =
∑∞
n=0

(−1)n42n+1x4n+2

2n+1 . Integrating then yields
∫ 1/4

0
tan−1(4x2) dx =∑∞

n=0
(−1)n42n+1

(2n+1)(4n+3)44n+3 =
∑∞
n=0

(−1)n
(2n+1)(4n+3)42n+2 . By the alternating series error bound, we want to find

N such that 1
(2N+3)(4N+7)(42N+4)

≤ 1
103 . By inspection N = 0 works, so the first term of the sum is good

enough and the approximation is 1
3·42 = 1

48 .
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6. (13 pts.)

(a) (5 pts.) Compute lim
x→1+

√
x− 1 ln(ln(x))

Solution: This is a 0 ·∞ type limit so write this as limx→1+
ln(ln(x))

(x−1)−1/2 to make this an ∞∞ type limit.

Doing L’Hopital once gives limx→1+

1
ln(x)

· 1x
− 1

2 (x−1)−3/2 = limx→1+
−2(x−1)3/2
x ln(x) . Doing it a second time gives

limx→1+
−3(x−1)1/2

ln(x)+1 = 0.

(b) (5 pts.) Use Taylor series to compute lim
x→0

cos(x2)− 1 + x4/2

x2(x− sin(x))2

Solution: We have cos(x) =
∑∞
n=0

(−1)nx2n

(2n)! by taking a derivative of sin(x), so cos(x2) = 1 −

x4/2 + x8/24 − . . .. Therefore, we want to compute limx→0

1
24x

8+...

x2( 1
6x

3+...)2
= limx→0

1
24x

8+...

( 1
6x

4+...)2
=

limx→0

1
24+...

( 1
6+...)

2 = 3
2 since all the terms hidden behind the . . . have a power of x larger than 1,

and so disappear when plugging in x = 0.

(c) (3 pts.) Order the following functions from slowest growing to fastest growing as x → ∞. Give a
short justification as to how you know your ordering is correct.

x2 ln(x), x ln(x)2, x5/4, ln(ln(x)), ln(x)4

Solution: The order is ln(ln(x)) � ln(x)4 � x ln(x)2 � x5/4 � x2 ln(x), where � means “eventu-
ally less than”. ln(x) eventually grows slower than any power of x, and so this also means ln(ln(x))
eventually grows slower than ln(x) by taking a logarithm. The first � is then obvious, the sec-
ond/third from the first statement, and the last because ln(x) > 1 eventually so x5/4 < x2 < x2 ln(x)
eventually.
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7. (10 pts.)

(a) (5 pts.) Compute

∫ 1

0

120x2

(4− x2)7/2
dx

Solution: Set x = 2 sin θ. After substituting in and simplifying, the integral becomes
∫ π/6
0

960 sin2(θ)
128 cos6(θ) dθ =

15
2

∫ π/6
0

tan2(θ) sec4(θ) dθ. Using sec2(θ) = tan2(θ) + 1, this is 15
2

∫ π/6
0

tan2(θ)(tan2(θ) + 1) sec2(θ) dθ,

which after a substitution of u = tan(θ) is 15
2 ( tan5(θ)

5 + tan3(θ)
3

∣∣π/6
0

) = 1√
3
.

(b) (5 pts.) Compute

∫
x3 + 2x2 + 2

x2(x2 + 2)
dx

Solution: The general partial fraction decomposition looks like A
x + B

x2 + Cx+D
x2+2 , so we want to solve

x3 + 2x2 + 2 = Ax(x2 + 2) + B(x2 + 2) + (Cx + D)x2. Expanding, this means x3 + 2x2 + 2 =
(A+C)x3 + (B+C)x2 + 2Ax+ 2B. Comparing coefficients yields A = 0, B = C = D = 1 and so we
want to compute

∫
( 1
x2 + x+1

x2+2 ) dx =
∫

1
x2 + x

x2+2 + 1
x2+2 dx = − 1

x + 1
2 ln(x2 + 2) + 1√

2
arctan( x√

2
) +C.
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8. (8 pts.) Determine if

∫ ∞
0

2x√
x(1 + ex)

dx converges or diverges. Justify your answer carefully.

Solution: We have
∫∞
0

2x√
x(1+ex)

dx =
∫ 1

0
2x√

x(1+ex)
dx +

∫∞
1

2x√
x(1+ex)

dx. For the first integral, we have∫ 1

0
2x√

x(1+ex)
dx ≤

∫ 1

0
2√
x
dx = 4, so it converges. For the second integral, we have

∫∞
1

2x√
x(1+ex)

dx ≤∫∞
1

( 2
e )x dx = − 2/e

ln(2/e) by direct computation. Since both pieces converge, the entire integral converges.
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9. (12 pts.) Determine if the following infinite series converge (conditionally or absolutely, if applicable) or
diverge. Justify your answers carefully.

(a) (6 pts.)

∞∑
n=1

n2 + ln(n)

6n

Solution: We have n2+ln(n)
6n ≤ 2·2n

6n = 2( 1
3 )n, and

∑∞
n=1 2( 1

3 )n is a convergent geometric series
because 1/3 < 1, so the series converges by a direct comparison. Alternatively, you can do the ratio
test.

(b) (6 pts.)

∞∑
n=1

(−1)n
n

n2 + 4−n

Solution: We have
∑∞
n=1

n
n2+4−n ≈

∑∞
n=1

1
n which diverges. Running LCT with

∑∞
n=1

n
n2+4−n and∑∞

n=1
1
n , we see that limn→∞

n/(n2+4−n)
1/n = limn→∞

n2

n2+4−n = 1, so the series diverges.

On the other hand, we have limn→∞
n

n2+4−n = 0 and the function f(x) = x
x2+4−x is decreasing

because f ′(x) = −x2+4−x−x ln(4)4−x

(x2+4−x)2 < 0 eventually since −x2 is the dominant term. Therefore by the

alternating series test, the alternating series converges, and so the convergence is conditional.
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10. (11 pts.) Define a sequence an by an =
1

π

∫ π

−π
x2 cos(nx) dx.

(a) (8 pts.) Find an explicit formula for an for n ≥ 1.

Solution: Integrate by parts with u = x2 and dv = cos(nx) to get 1
π

∫ π
−π x

2 cos(nx) dx = 1
π ( 1

nx
2 sin(nx)|π−π−∫ π

−π
2
nx sin(nx) dx) = − 2

nπ

∫ π
−π x sin(nx) dx since sin(πn) = 0 for all integer n. Integrate by parts

again to get− 2
nπ

∫ π
−π x sin(nx) dx = 2x

n2π cos(nx)|π−π+ 2
nπ

∫ π
−π cos(nx) dx = 2x

n2π cos(nx)|π−π = (−1)n 4
n2π

because cos(πn) = cos(−πn) = (−1)n. Therefore, an = (−1)n 4
n2 .

(b) (3 pts.) For which values of x does

∞∑
n=1

an cos(nx) converge?

Solution: The series is
∑∞
n=1(−1)n 4

n2 cos(nx). Taking an absolute value, we see
∑∞
n=1 |(−1)n 4

n2 cos(nx)| ≤∑∞
n=1

4
n2 <∞ regardless of x, so the series converges (absolutely!) for all x ∈ R.
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