Final Review
Tim Smits

. Let a,n be integers with n > 1. Suppose that ¢! = 1 mod n and a? # 1 mod n for every

proper divisor d of n — 1. Prove that n is prime.

(a) Let a,n be positive integers with (a,n) = 1. Suppose that (k, p(n)) = 1. Prove that the

equation ¥ = a mod n has a unique solution.

(b) Find the solution to 27 = 21 mod 23.
. Let p be an odd prime, and suppose p = a? + b?> where a is odd. Prove that a is a square mod
p.
. Suppose that n = 4¢(8k + 7) for some e, k > 0. Prove that n is not a sum of three squares.
(It’s actually true that any integer not of this form is a sum of three squares, but it’s very
hard to prove!)

(a) Let a,n be positive integers with a > 2. Prove that n | (a™ — 1).

(b) Prove that if p | ¢(n) and p{n then there is a prime factor ¢ of n with ¢ =1 mod p.

(¢) Let p be a prime. Prove there are infinitely many primes ¢ = 1 mod p.
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Hints

. Case on the number of prime factors of n.

Bezout’s lemma.

Find a generator mod 23.

. Use Jacobi symbols.

First handle the case that e = 0.
What is ordgn—1(a)?

Compute ¢(n) in terms of a prime factorization of n.

Suppose there are finitely many primes pq,...,pr with p; = 1 mod p. Set a = pp; --

Choose a suitable exponent to apply parts (a) and (b).
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Solutions

. Suppose that n is composite. First, suppose that n has at least two distinct prime factors.

Then we may write n = k¢ for some k¢ with (k,£) = 1. We have p(n) = ¢(k)p(£), and by
Euler’s theorem, a®*(™) = 1 mod n. The assumptions in the problem say that ord,(a) =n—1,
so this means n — 1 | p(n) = w(k)e(¢). Since p(k) < k—1 and ¢(¢) < £ — 1, we see that
pn) < (k-1 —-1)=n—(k+£—1) <n—1. This is a contradiction. This leaves only
the case where n = p° for some prime p. In this case, p(n) = ¢(p°) = p°~!(p — 1) and this is
clearly not divisible by p® — 1, which is also a contradiction. Therefore, n is prime.

(a) Suppose that ¥ = a mod n and y* = a mod n, so that z* = y* mod n. Since (a,n) = 1,
this means that (z,n) = 1 and (y,n) = 1. Thus, (z/y)* = 1 mod n. By Bezout’s lemma,
there are integers a,b with ak + bp(n) = 1. Since (z/y)?™ = 1modn by Euler’s
theorem, we have (x/y) = (x/y)* T2 = ((x/y)*)* - ((x/y)¥™)> = 1% -1° = 1 mod n,
so that x = y mod n as desired.

(b) We have 22 = 2-11. Note that 5 is a generator mod 23: we must have ordas(5) | 22,
so it’s either 2,11, or 22. We compute that 52 = 2 mod 23 and 5'' = —1 mod 23, so
the only remaining possibility is that ordes(5) = 22. Note that 21 = —2 mod 23, so
21 = 5" mod 23. Since 5 is a generator, we may write 2 = 5* mod 23 for some k. We
wish to solve 57 = 21 mod 23. Taking a discrete log, we have 7k = log(21) mod 22, so
7k = 13 mod 22. One can check that % = 19 mod 22, so kK =13 -19 = 5 mod 22. Thus,
x = 5% = 20 mod 23 is the solution.

. This is equivalent to showing that (%) = 1. Write a = p{*---p}*. Since p is a sum of

two squares, we must have p = 1 mod 4. By Jacobi reciprocity and properties of the Jacobi
symbol, we have (%) = (pﬂl)el (p%_)ek. Since p; | a, we have p = b% mod p;, so that (ﬁ) =1
for each ¢. Thus, (%) =1.

. First, suppose that e = 0. Then n = 8k + 7, s0o n = 7Tmod 8. If n = x2 4+ 92 + 22, then

2?2 + 4% + 22 = 7T mod 8. The squares mod 8 are 0,1,4 mod 8. Since n is odd, an odd number
of these three squares must equal 1 mod 8. Clearly all three of them can’t, which means
exactly one of them is. This means the remaining two squares sum to 6 mod 8, and it’s
easy to see that this is impossible. Now, suppose that e > 1 and n = 22 + y? + 22. Then
2?2 + 42 + 22 = 0 mod 4. The squares mod 4 are 0,1 mod 4, so the only way this is possible is
if 22,92, 2?2 = 0 mod 4, i.e. z,y, z are even. Then n/4 = (2/2)? + (y/2)? + (2/2)%. Repeating
this, n/4¢ = (2/2°)% + (y/2°)? + (2/2¢)2, a contradiction to the e = 0 case. Thus, no n of
such a form is a sum of three squares.

(a) Clearly, (a,a™ — 1) = 1. By Euler’s theorem, we have a¥(®"~1) = 1 mod a” — 1. Note
that ¢” — 1 =0mod a™ — 1, so a” = 1 mod a™ — 1. We now show that ord,»_1(a) = n.
Suppose otherwise, that ord,»_1(a) = d for some d | n. Then a? = 1 mod a™ — 1 says
a" — 1| a® — 1, which is impossible since d < n. Therefore, ord,»_1(a) = n, so that
n | ¢(a™ — 1) as desired.
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(b) Let n = p{'---p* be the prime factorization of n. Then ¢(n) = pJ P (o —
1)---(px — 1). Since p { n, then p # p; for any i. Since p | ¢(n), this means that
p| (pi — 1) for some i, i.e. p; =1 mod p for some 1.

(¢) Suppose there are finitely many primes py, ..., p; with p; =1 mod p. Set a = pp1 - - - pg.
Then by part (a), we have p | p(a? —1). Since a? —1 = (ppy -+ - p)? — 1, then pta? — 1.
By part (b), there is a prime factor g of a? — 1 with ¢ = 1 mod p. However, note that
a? —1 = —1 mod p;, so aP — 1 is not divisible by any of the primes that are 1 mod p.
This is a contradiction. Therefore, there are infinitely many primes ¢ = 1 mod p.



