
Final Review

Tim Smits

1. Let a, n be integers with n > 1. Suppose that an−1 ≡ 1 mod n and ad 6≡ 1 mod n for every
proper divisor d of n− 1. Prove that n is prime.

2. (a) Let a, n be positive integers with (a, n) = 1. Suppose that (k, ϕ(n)) = 1. Prove that the
equation xk ≡ a mod n has a unique solution.

(b) Find the solution to x7 ≡ 21 mod 23.

3. Let p be an odd prime, and suppose p = a2 + b2 where a is odd. Prove that a is a square mod
p.

4. Suppose that n = 4e(8k + 7) for some e, k ≥ 0. Prove that n is not a sum of three squares.
(It’s actually true that any integer not of this form is a sum of three squares, but it’s very
hard to prove!)

5. (a) Let a, n be positive integers with a ≥ 2. Prove that n | ϕ(an − 1).

(b) Prove that if p | ϕ(n) and p - n then there is a prime factor q of n with q ≡ 1 mod p.

(c) Let p be a prime. Prove there are infinitely many primes q ≡ 1 mod p.
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Hints

1. Case on the number of prime factors of n.

2a. Bezout’s lemma.

2b. Find a generator mod 23.

3. Use Jacobi symbols.

4. First handle the case that e = 0.

5a. What is ordan−1(a)?

5b. Compute ϕ(n) in terms of a prime factorization of n.

5c. Suppose there are finitely many primes p1, . . . , pk with pi ≡ 1 mod p. Set a = pp1 · · · pk.
Choose a suitable exponent to apply parts (a) and (b).
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Solutions

1. Suppose that n is composite. First, suppose that n has at least two distinct prime factors.
Then we may write n = k` for some k` with (k, `) = 1. We have ϕ(n) = ϕ(k)ϕ(`), and by
Euler’s theorem, aϕ(n) ≡ 1 mod n. The assumptions in the problem say that ordn(a) = n−1,
so this means n − 1 | ϕ(n) = ϕ(k)ϕ(`). Since ϕ(k) ≤ k − 1 and ϕ(`) ≤ ` − 1, we see that
ϕ(n) ≤ (k − 1)(` − 1) = n − (k + ` − 1) < n − 1. This is a contradiction. This leaves only
the case where n = pe for some prime p. In this case, ϕ(n) = ϕ(pe) = pe−1(p− 1) and this is
clearly not divisible by pe − 1, which is also a contradiction. Therefore, n is prime.

2. (a) Suppose that xk ≡ a mod n and yk ≡ a mod n, so that xk ≡ yk mod n. Since (a, n) = 1,
this means that (x, n) = 1 and (y, n) = 1. Thus, (x/y)k ≡ 1 mod n. By Bezout’s lemma,
there are integers a, b with ak + bϕ(n) = 1. Since (x/y)ϕ(n) ≡ 1 mod n by Euler’s
theorem, we have (x/y) = (x/y)ak+bϕ(n) = ((x/y)k)a · ((x/y)ϕ(n))b ≡ 1a · 1b ≡ 1 mod n,
so that x ≡ y mod n as desired.

(b) We have 22 = 2 · 11. Note that 5 is a generator mod 23: we must have ord23(5) | 22,
so it’s either 2, 11, or 22. We compute that 52 ≡ 2 mod 23 and 511 ≡ −1 mod 23, so
the only remaining possibility is that ord23(5) = 22. Note that 21 ≡ −2 mod 23, so
21 ≡ 513 mod 23. Since 5 is a generator, we may write x ≡ 5k mod 23 for some k. We
wish to solve 57k ≡ 21 mod 23. Taking a discrete log, we have 7k ≡ log5(21) mod 22, so
7k ≡ 13 mod 22. One can check that 1

7 ≡ 19 mod 22, so k ≡ 13 · 19 ≡ 5 mod 22. Thus,
x ≡ 55 ≡ 20 mod 23 is the solution.

3. This is equivalent to showing that
(
a
p

)
= 1. Write a = pe11 · · · p

ek
k . Since p is a sum of

two squares, we must have p ≡ 1 mod 4. By Jacobi reciprocity and properties of the Jacobi
symbol, we have

(
a
p

)
=

(
p
p1

)e1 · · · ( p
pk

)ek . Since pi | a, we have p ≡ b2 mod pi, so that
(

p
pi

)
= 1

for each i. Thus,
(
a
p

)
= 1.

4. First, suppose that e = 0. Then n = 8k + 7, so n ≡ 7 mod 8. If n = x2 + y2 + z2, then
x2 + y2 + z2 ≡ 7 mod 8. The squares mod 8 are 0, 1, 4 mod 8. Since n is odd, an odd number
of these three squares must equal 1 mod 8. Clearly all three of them can’t, which means
exactly one of them is. This means the remaining two squares sum to 6 mod 8, and it’s
easy to see that this is impossible. Now, suppose that e ≥ 1 and n = x2 + y2 + z2. Then
x2 + y2 + z2 ≡ 0 mod 4. The squares mod 4 are 0, 1 mod 4, so the only way this is possible is
if x2, y2, z2 ≡ 0 mod 4, i.e. x, y, z are even. Then n/4 = (x/2)2 + (y/2)2 + (z/2)2. Repeating
this, n/4e = (x/2e)2 + (y/2e)2 + (z/2e)2, a contradiction to the e = 0 case. Thus, no n of
such a form is a sum of three squares.

5. (a) Clearly, (a, an − 1) = 1. By Euler’s theorem, we have aϕ(an−1) ≡ 1 mod an − 1. Note
that an − 1 ≡ 0 mod an − 1, so an ≡ 1 mod an − 1. We now show that ordan−1(a) = n.
Suppose otherwise, that ordan−1(a) = d for some d | n. Then ad ≡ 1 mod an − 1 says
an − 1 | ad − 1, which is impossible since d < n. Therefore, ordan−1(a) = n, so that
n | ϕ(an − 1) as desired.

(b) Let n = pe11 · · · p
ek
k be the prime factorization of n. Then ϕ(n) = pe1−1

1 · · · pek−1
k (p1 −

1) · · · (pk − 1). Since p - n, then p 6= pi for any i. Since p | ϕ(n), this means that
p | (pi − 1) for some i, i.e. pi ≡ 1 mod p for some i.

(c) Suppose there are finitely many primes p1, . . . , pk with pi ≡ 1 mod p. Set a = pp1 · · · pk.
Then by part (a), we have p | ϕ(ap− 1). Since ap− 1 = (pp1 · · · pk)p− 1, then p - ap− 1.
By part (b), there is a prime factor q of ap − 1 with q ≡ 1 mod p. However, note that
ap − 1 ≡ −1 mod pi, so ap − 1 is not divisible by any of the primes that are 1 mod p.
This is a contradiction. Therefore, there are infinitely many primes q ≡ 1 mod p.
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