Final Review Tim Smits

- 1. Let a, n be integers with n > 1. Suppose that $a^{n-1} \equiv 1 \mod n$ and $a^d \not\equiv 1 \mod n$ for every proper divisor d of n-1. Prove that n is prime.
- 2. (a) Let a, n be positive integers with (a, n) = 1. Suppose that $(k, \varphi(n)) = 1$. Prove that the equation $x^k \equiv a \mod n$ has a unique solution.
 - (b) Find the solution to $x^7 \equiv 21 \mod 23$.
- 3. Let p be an odd prime, and suppose $p = a^2 + b^2$ where a is odd. Prove that a is a square mod p.
- 4. Suppose that $n = 4^e(8k + 7)$ for some $e, k \ge 0$. Prove that n is not a sum of three squares. (It's actually true that any integer not of this form is a sum of three squares, but it's very hard to prove!)
- 5. (a) Let a, n be positive integers with $a \ge 2$. Prove that $n \mid \varphi(a^n 1)$.
 - (b) Prove that if $p \mid \varphi(n)$ and $p \nmid n$ then there is a prime factor q of n with $q \equiv 1 \mod p$.
 - (c) Let p be a prime. Prove there are infinitely many primes $q \equiv 1 \mod p$.

Hints

- 1. Case on the number of prime factors of n.
- 2a. Bezout's lemma.
- 2b. Find a generator mod 23.
- 3. Use Jacobi symbols.
- 4. First handle the case that e = 0.
- 5a. What is $\operatorname{ord}_{a^n-1}(a)$?
- 5b. Compute $\varphi(n)$ in terms of a prime factorization of n.
- 5c. Suppose there are finitely many primes p_1, \ldots, p_k with $p_i \equiv 1 \mod p$. Set $a = pp_1 \cdots p_k$. Choose a suitable exponent to apply parts (a) and (b).

Solutions

- 1. Suppose that n is composite. First, suppose that n has at least two distinct prime factors. Then we may write $n = k\ell$ for some $k\ell$ with $(k, \ell) = 1$. We have $\varphi(n) = \varphi(k)\varphi(\ell)$, and by Euler's theorem, $a^{\varphi(n)} \equiv 1 \mod n$. The assumptions in the problem say that $\operatorname{ord}_n(a) = n - 1$, so this means $n - 1 \mid \varphi(n) = \varphi(k)\varphi(\ell)$. Since $\varphi(k) \leq k - 1$ and $\varphi(\ell) \leq \ell - 1$, we see that $\varphi(n) \leq (k-1)(\ell-1) = n - (k+\ell-1) < n-1$. This is a contradiction. This leaves only the case where $n = p^e$ for some prime p. In this case, $\varphi(n) = \varphi(p^e) = p^{e-1}(p-1)$ and this is clearly not divisible by $p^e - 1$, which is also a contradiction. Therefore, n is prime.
- 2. (a) Suppose that $x^k \equiv a \mod n$ and $y^k \equiv a \mod n$, so that $x^k \equiv y^k \mod n$. Since (a, n) = 1, this means that (x, n) = 1 and (y, n) = 1. Thus, $(x/y)^k \equiv 1 \mod n$. By Bezout's lemma, there are integers a, b with $ak + b\varphi(n) = 1$. Since $(x/y)^{\varphi(n)} \equiv 1 \mod n$ by Euler's theorem, we have $(x/y) = (x/y)^{ak+b\varphi(n)} = ((x/y)^k)^a \cdot ((x/y)^{\varphi(n)})^b \equiv 1^a \cdot 1^b \equiv 1 \mod n$, so that $x \equiv y \mod n$ as desired.
 - (b) We have $22 = 2 \cdot 11$. Note that 5 is a generator mod 23: we must have $\operatorname{ord}_{23}(5) \mid 22$, so it's either 2, 11, or 22. We compute that $5^2 \equiv 2 \mod 23$ and $5^{11} \equiv -1 \mod 23$, so the only remaining possibility is that $\operatorname{ord}_{23}(5) = 22$. Note that $21 \equiv -2 \mod 23$, so $21 \equiv 5^{13} \mod 23$. Since 5 is a generator, we may write $x \equiv 5^k \mod 23$ for some k. We wish to solve $5^{7k} \equiv 21 \mod 23$. Taking a discrete log, we have $7k \equiv \log_5(21) \mod 22$, so $7k \equiv 13 \mod 22$. One can check that $\frac{1}{7} \equiv 19 \mod 22$, so $k \equiv 13 \cdot 19 \equiv 5 \mod 22$. Thus, $x \equiv 5^5 \equiv 20 \mod 23$ is the solution.
- 3. This is equivalent to showing that $\left(\frac{a}{p}\right) = 1$. Write $a = p_1^{e_1} \cdots p_k^{e_k}$. Since p is a sum of two squares, we must have $p \equiv 1 \mod 4$. By Jacobi reciprocity and properties of the Jacobi symbol, we have $\left(\frac{a}{p}\right) = \left(\frac{p}{p_1}\right)^{e_1} \cdots \left(\frac{p}{p_k}\right)^{e_k}$. Since $p_i \mid a$, we have $p \equiv b^2 \mod p_i$, so that $\left(\frac{p}{p_i}\right) = 1$ for each i. Thus, $\left(\frac{a}{p}\right) = 1$.
- 4. First, suppose that e = 0. Then n = 8k + 7, so $n \equiv 7 \mod 8$. If $n = x^2 + y^2 + z^2$, then $x^2 + y^2 + z^2 \equiv 7 \mod 8$. The squares mod 8 are 0, 1, 4 mod 8. Since n is odd, an odd number of these three squares must equal 1 mod 8. Clearly all three of them can't, which means exactly one of them is. This means the remaining two squares sum to 6 mod 8, and it's easy to see that this is impossible. Now, suppose that $e \ge 1$ and $n = x^2 + y^2 + z^2$. Then $x^2 + y^2 + z^2 \equiv 0 \mod 4$. The squares mod 4 are 0, 1 mod 4, so the only way this is possible is if $x^2, y^2, z^2 \equiv 0 \mod 4$, i.e. x, y, z are even. Then $n/4 = (x/2)^2 + (y/2)^2 + (z/2)^2$. Repeating this, $n/4^e = (x/2^e)^2 + (y/2^e)^2 + (z/2^e)^2$, a contradiction to the e = 0 case. Thus, no n of such a form is a sum of three squares.
- 5. (a) Clearly, $(a, a^n 1) = 1$. By Euler's theorem, we have $a^{\varphi(a^n 1)} \equiv 1 \mod a^n 1$. Note that $a^n 1 \equiv 0 \mod a^n 1$, so $a^n \equiv 1 \mod a^n 1$. We now show that $\operatorname{ord}_{a^n 1}(a) = n$. Suppose otherwise, that $\operatorname{ord}_{a^n 1}(a) = d$ for some $d \mid n$. Then $a^d \equiv 1 \mod a^n 1$ says $a^n 1 \mid a^d 1$, which is impossible since d < n. Therefore, $\operatorname{ord}_{a^n 1}(a) = n$, so that $n \mid \varphi(a^n 1)$ as desired.
 - (b) Let $n = p_1^{e_1} \cdots p_k^{e_k}$ be the prime factorization of n. Then $\varphi(n) = p_1^{e_1-1} \cdots p_k^{e_k-1}(p_1 1) \cdots (p_k 1)$. Since $p \nmid n$, then $p \neq p_i$ for any i. Since $p \mid \varphi(n)$, this means that $p \mid (p_i 1)$ for some i, i.e. $p_i \equiv 1 \mod p$ for some i.
 - (c) Suppose there are finitely many primes p_1, \ldots, p_k with $p_i \equiv 1 \mod p$. Set $a = pp_1 \cdots p_k$. Then by part (a), we have $p \mid \varphi(a^p - 1)$. Since $a^p - 1 = (pp_1 \cdots p_k)^p - 1$, then $p \nmid a^p - 1$. By part (b), there is a prime factor q of $a^p - 1$ with $q \equiv 1 \mod p$. However, note that $a^p - 1 \equiv -1 \mod p_i$, so $a^p - 1$ is not divisible by any of the primes that are $1 \mod p$. This is a contradiction. Therefore, there are infinitely many primes $q \equiv 1 \mod p$.