
Midterm 2 Review

Tim Smits

1. (a) Solve the system of congruence equations:
x ≡ 3 mod 5

x ≡ 1 mod 7

x ≡ 6 mod 8

(b) Solve x5 ≡ 7 mod 72.

(c) Does x2 − 3x+ 64 ≡ 0 mod 113 have a solution?

(d) Find all primes p such that
(
10
p

)
= 1.

2. Let f(x) be a polynomial with integer coefficients, and let m,n be relatively prime integers.

(a) Prove that f(x) ≡ 0 mod mn has a solution if and only if f(x) ≡ 0 mod m and f(x) ≡
0 mod n both have a solution.

(b) Let N1 be the number of solutions to f(x) ≡ 0 mod m and N2 be the number of solutions
to f(x) ≡ 0 mod n. Prove that the number of solutions to f(x) ≡ 0 mod mn is N =
N1N2.

(c) Compute the number of solutions to x2 ≡ 1 mod 24 · 33 · 52 · 7.

3. Use the line passing through (3, 2) to parametrize all rational points on the hyperbola x2 −
2y2 = 1.

4. (a) Show that a positive integer n is perfect if and only if
∑
d|n

1

d
= 2. (Here the sum is taken

over all divisors d of n).

(b) If n is perfect, show that kn is not perfect for k > 1.

5. Let p ≡ 1 mod 4 be a prime.

(a) Prove that the sum of quadratic residues a mod p with 1 ≤ a ≤ p− 1 is p(p−1)
4 .

(b) Prove that

p−1∑
a=1

(
a

p

)
a = 0.

6. A Fermat prime is a prime p with p = 22
n

+ 1 for some n ≥ 1. Prove that if p is a Fermat
prime, then 3(p−1)/2 ≡ −1 mod p. (This can be used to show that 22

14

+ 1 is composite,
although we don’t know any of it’s prime factors!)
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Hints

2. Show that if f(x1) ≡ 0 mod m and f(x2) ≡ 0 mod n then the solution to

{
x ≡ x1 mod m

x ≡ x2 mod n

satisfies f(x) ≡ 0 mod mn.

5a. If a is a quadratic residue, what does this mean about p− a?

5b. Notice that

(
a

p

)
a = a if a is a square mod p and is −a otherwise.

6. Rewrite the congruence as a statement about a certain Legendre symbol.
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Solutions

1. (a) We use the Chinese remainder theorem. Since x ≡ 3 mod 5, write x = 3+5k for some k.
This says 3 + 5k ≡ 1 mod 7, so 5k ≡ 5 mod 7. This says k ≡ 1 mod 7, so k = 1 + 7m for
some m. Plugging in says x = 3 + 5(1 + 7m) = 8 + 35m. Plugging into the last equation,
8 + 35m ≡ 6 mod 8 so 3m ≡ 6 mod 8. This says m ≡ 2 mod 8, so m = 2 + 8`. for some
`. Plugging in gives x = 8 + 35(2 + 8`) = 78 + 280`, so the solution is x ≡ 78 mod 280.

(b) We have ϕ(72) = ϕ(8 · 9) = ϕ(8)ϕ(9) = 4 · 6 = 24. We now wish to find d such that
5d ≡ 1 mod 24. By inspection, we see that d = 5 works. Exponentiating and using
Euler’s theorem, we have x ≡ x25 ≡ (x5)5 ≡ 75 ≡ 31 mod 72.

(c) Completing the square, the quadratic is (x − 3
2 )2 + 247

4 . In order to make sure all
coefficients are integers, multiply by 4 to obtain (2x − 3)2 + 247. Since 4 is invertible
mod 113, asking if x2 − 3x + 64 has a solution mod 113 is the same as asking if (2x −
3)2 + 247 mod 113 has a solution. Equivalently, does (2x − 3)2 ≡ −21 mod 113 have a
solution? We have

(−21
113

)
=
( −1
113

)(
3

113

)(
7

113

)
. Note that 113 ≡ 1 mod 4 and is prime, so

we can use quadratic reciprocity to compute the last two Legendre symbols. We have(
3

113

)
=
(
113
3

)
=
(
2
3

)
= −1, and

(
7

113

)
=
(
113
7

)
=
(
1
7

)
= 1. We also have

( −1
113

)
= 1, so(−21

113

)
= −1. This says there are no solutions to the quadratic congruence.

(d) We have
(
10
p

)
=
(
2
p

)(
5
p

)
, so we want either both Legendre symbols to be 1 or both

to be −1. Note that if p = 2, 5 that 10 ≡ 0 mod p. If p 6= 2, 5, then by quadratic
reciprocity,

(
5
p

)
=
(
p
5

)
. The squares mod 5 are 1, 4 and the non-squares are 2, 3 so(

5
p

)
=

{
1 p ≡ 1, 4 mod 5

−1 p ≡ 2, 3 mod 5
. We also know that

(
2
p

)
=

{
1 p ≡ 1, 7 mod 8

−1 p ≡ 3, 5 mod 8
. Using

the Chinese remainder theorem to solve the various systems of congruences gives p ≡
1, 3, 9, 13, 27, 31, 37, 39 mod 40 as the 8 congruence classes of primes that work.

2. (a) First, suppose that f(x) ≡ 0 mod mn has a solution, say c. Then f(c) ≡ 0 mod mn
says f(c) ≡ 0 mod m and f(c) ≡ 0 mod n so c is a solution to both f(x) ≡ 0 mod m
and f(x) ≡ 0 mod n. Conversely, suppose that f(x1) ≡ 0 mod m and f(x2) ≡ 0 mod n.
for some x1, x2. By the Chinese remainder theorem, there is an integer y such that
y ≡ x1 mod m and y ≡ x2 mod n. Thus, f(y) ≡ f(x1) ≡ 0 mod m and f(y) ≡ f(x2) ≡
0 mod n. As m and n are relatively prime, this says mn | f(y), i.e. f(y) ≡ 0 mod mn as
desired.

(b) Part (a) says that each pair of solutions (x1, x2) to the congruence equations f(x) ≡
0 mod m and f(x) ≡ 0 mod n gives rise to a solution mod mn, and the Chinese remainder
theorem says such a solution is unique. Therefore, counting the number of solutions
to f(x) ≡ 0 mod mn is the same as counting the number of pairs (x1, x2), which by
definition, is N1N2.

(c) By the previous part, the number of solutions can be found by computing the number
of solutions to each of x2 ≡ 1 mod m, where m = 7, 16, 25, 27. Note that x2 ≡ 1 mod 16
has 4 solutions, and each of x2 ≡ 1 mod 7, 25, 27 have 2 solutions by midterm 1 review
problem 6. This gives a total of 4 · 2 · 2 · 2 = 32 solutions.

3. Let (p, q) be a point on our curve, and consider the line of slope m = q−2
p−3 passing through

(p, q) and (3, 2). The equation of this line is y = 2+m(x−3), so plugging into the equation says

x2−2(2+m(x−3))2 = 1. Grouping and dividing by the coefficient on x2 gives x2+ 4m(3m−2)
1−2m2 x−

3(6m2−8m+3)
1−2m2 = 0. Since (p, q) and (3, 2) are rational points, we know that p and 3 are roots

of this quadratic. The constant term is the product of the roots, so 3p = − 3(6m2−8m+3)
1−2m2 , so

p = 6m2−8m+3
2m2−1 . We have q = 2 + m(p − 3) = −2(2m2−3m+1)

2m2−1 . We have shown that any point
(p, q) on the curve can be written in terms of the slope of the line connecting it to the point
(3, 2) (when such a slope is well-defined). A rational point has a rational slope m, and given
any rational number m the point produced above has rational coordinates. The only points
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our method miss are when the slope is not-well defined, i.e. the vertical line x = 3. Solving
9− 2y2 = 1 says y = ±2, so the only point we have missed is (3,−2). Therefore any rational

point is either (3,−2) or (6m2−8m+3
2m2−1 , −2(2m

2−3m+1)
2m2−1 ) for m ∈ Q.

4. (a) An integer n is perfect if and only if σ(n) = 2n, or equivalently, if σ(n)
n = 2. Write

σ(n) =
∑
d|n d, so σ(n)

n =
∑
d|n

d
n . Since d is a divisor of n, we have n = dd′ for some

other divisor d′. Therefore, d
n = 1

d′ . Taking the sum over all divisors d will produce

all possible choices of d′, so
∑
d|n

d
n =

∑
d′|n

1
d′ . Therefore, n is perfect if and only if∑

d|n
1
d = 2.

(b) If d | n, then kd | kn for any k > 1. Therefore,
∑
d|kn

1
d =

∑
d|n

kd
kn + stuff =

∑
d′|n

1
d′ +

stuff > 2 since n is perfect. By part (a), this means kn is not perfect.

5. (a) Since p ≡ 1 mod 4, −1 is a square mod p. Therefore, if a is a square mod p, then so is
p − a. The pair (a, p − a) sums up to p, so we just need to count how many such pairs
there are. We know there are p−1

2 quadratic residues between 1 and p− 1, so there are
p−1
4 such pairs. This says the sum is p(p−1)

4 as desired.

(b) We can write
∑p−1
a=1

(
a
p

)
a =

∑
a≡� mod p a −

∑
a6≡� mod p a. By the same argument as

part (a), if a is a non-square mod p then so is p − a because −1 is a square mod p.

Therefore, both sums are p(p−1)
4 , and so cancel out. Thus,

∑p−1
a=1

(
a
p

)
a = 0 as desired.

6. By Euler’s criterion, 3(p−1)/2 ≡
(
3
p

)
mod p. Therefore, we wish to show that

(
3
p

)
= −1. Note

that p ≡ 1 mod 4, so by quadratic reciprocity, we wish to show that
(
p
3

)
= −1. Also notice

that p ≡ (−1)2
n

+ 1 ≡ 2 mod 3, and 2 is not a square mod 3. This proves what we wanted.
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