Midterm 2 Review Tim Smits

- 1. (a) Solve the system of congruence equations:
 - $\begin{cases} x \equiv 3 \mod 5 \\ x \equiv 1 \mod 7 \\ x \equiv 6 \mod 8 \end{cases}$
 - (b) Solve $x^5 \equiv 7 \mod{72}$.
 - (c) Does $x^2 3x + 64 \equiv 0 \mod 113$ have a solution?
 - (d) Find all primes p such that $\left(\frac{10}{p}\right) = 1$.
- 2. Let f(x) be a polynomial with integer coefficients, and let m, n be relatively prime integers.
 - (a) Prove that $f(x) \equiv 0 \mod mn$ has a solution if and only if $f(x) \equiv 0 \mod m$ and $f(x) \equiv 0 \mod n$ both have a solution.
 - (b) Let N_1 be the number of solutions to $f(x) \equiv 0 \mod m$ and N_2 be the number of solutions to $f(x) \equiv 0 \mod n$. Prove that the number of solutions to $f(x) \equiv 0 \mod mn$ is $N = N_1 N_2$.
 - (c) Compute the number of solutions to $x^2 \equiv 1 \mod 2^4 \cdot 3^3 \cdot 5^2 \cdot 7$.
- 3. Use the line passing through (3,2) to parametrize all rational points on the hyperbola $x^2 2y^2 = 1$.

4. (a) Show that a positive integer n is perfect if and only if $\sum_{d|n} \frac{1}{d} = 2$. (Here the sum is taken over all divisors d of n).

- (b) If n is perfect, show that kn is not perfect for k > 1.
- 5. Let $p \equiv 1 \mod 4$ be a prime.
 - (a) Prove that the sum of quadratic residues $a \mod p$ with $1 \le a \le p-1$ is $\frac{p(p-1)}{4}$.
 - (b) Prove that $\sum_{a=1}^{p-1} \left(\frac{a}{p}\right)a = 0.$
- 6. A *Fermat prime* is a prime p with $p = 2^{2^n} + 1$ for some $n \ge 1$. Prove that if p is a Fermat prime, then $3^{(p-1)/2} \equiv -1 \mod p$. (This can be used to show that $2^{2^{14}} + 1$ is composite, although we don't know any of it's prime factors!)

Hints

- 2. Show that if $f(x_1) \equiv 0 \mod m$ and $f(x_2) \equiv 0 \mod n$ then the solution to $\begin{cases} x \equiv x_1 \mod m \\ x \equiv x_2 \mod n \end{cases}$ satisfies $f(x) \equiv 0 \mod mn$.
- 5a. If a is a quadratic residue, what does this mean about p a?
- 5b. Notice that $\left(\frac{a}{p}\right)a = a$ if a is a square mod p and is -a otherwise.
- 6. Rewrite the congruence as a statement about a certain Legendre symbol.

Solutions

- (a) We use the Chinese remainder theorem. Since x ≡ 3 mod 5, write x = 3+5k for some k. This says 3+5k ≡ 1 mod 7, so 5k ≡ 5 mod 7. This says k ≡ 1 mod 7, so k = 1+7m for some m. Plugging in says x = 3+5(1+7m) = 8+35m. Plugging into the last equation, 8+35m ≡ 6 mod 8 so 3m ≡ 6 mod 8. This says m ≡ 2 mod 8, so m = 2+8ℓ. for some ℓ. Plugging in gives x = 8+35(2+8ℓ) = 78+280ℓ, so the solution is x ≡ 78 mod 280.
 - (b) We have $\varphi(72) = \varphi(8 \cdot 9) = \varphi(8)\varphi(9) = 4 \cdot 6 = 24$. We now wish to find d such that $5d \equiv 1 \mod 24$. By inspection, we see that d = 5 works. Exponentiating and using Euler's theorem, we have $x \equiv x^{25} \equiv (x^5)^5 \equiv 7^5 \equiv 31 \mod 72$.
 - (c) Completing the square, the quadratic is $(x \frac{3}{2})^2 + \frac{247}{4}$. In order to make sure all coefficients are integers, multiply by 4 to obtain $(2x 3)^2 + 247$. Since 4 is invertible mod 113, asking if $x^2 3x + 64$ has a solution mod 113 is the same as asking if $(2x 3)^2 + 247$ mod 113 has a solution. Equivalently, does $(2x 3)^2 \equiv -21 \mod 113$ have a solution? We have $\left(\frac{-21}{113}\right) = \left(\frac{-1}{113}\right) \left(\frac{3}{113}\right) \left(\frac{7}{113}\right)$. Note that $113 \equiv 1 \mod 4$ and is prime, so we can use quadratic reciprocity to compute the last two Legendre symbols. We have $\left(\frac{3}{113}\right) = \left(\frac{113}{3}\right) = \left(\frac{2}{3}\right) = -1$, and $\left(\frac{7}{113}\right) = \left(\frac{113}{7}\right) = \left(\frac{1}{7}\right) = 1$. We also have $\left(\frac{-1}{113}\right) = 1$, so $\left(\frac{-21}{113}\right) = -1$. This says there are no solutions to the quadratic congruence.
 - (d) We have $\left(\frac{10}{p}\right) = \left(\frac{2}{p}\right)\left(\frac{5}{p}\right)$, so we want either both Legendre symbols to be 1 or both to be -1. Note that if p = 2,5 that $10 \equiv 0 \mod p$. If $p \neq 2,5$, then by quadratic reciprocity, $\left(\frac{5}{p}\right) = \left(\frac{p}{5}\right)$. The squares mod 5 are 1,4 and the non-squares are 2,3 so $\left(\frac{5}{p}\right) = \begin{cases} 1 & p \equiv 1,4 \mod 5 \\ -1 & p \equiv 2,3 \mod 5 \end{cases}$. We also know that $\left(\frac{2}{p}\right) = \begin{cases} 1 & p \equiv 1,7 \mod 8 \\ -1 & p \equiv 3,5 \mod 8 \end{cases}$. Using the Chinese remainder theorem to solve the various systems of congruences gives $p \equiv 1,3,9,13,27,31,37,39 \mod 40$ as the 8 congruence classes of primes that work.
- 2. (a) First, suppose that f(x) ≡ 0 mod mn has a solution, say c. Then f(c) ≡ 0 mod mn says f(c) ≡ 0 mod m and f(c) ≡ 0 mod n so c is a solution to both f(x) ≡ 0 mod m and f(x) ≡ 0 mod n. Conversely, suppose that f(x₁) ≡ 0 mod m and f(x₂) ≡ 0 mod n. for some x₁, x₂. By the Chinese remainder theorem, there is an integer y such that y ≡ x₁ mod m and y ≡ x₂ mod n. Thus, f(y) ≡ f(x₁) ≡ 0 mod m and f(y) ≡ f(x₂) ≡ 0 mod m. As m and n are relatively prime, this says mn | f(y), i.e. f(y) ≡ 0 mod mn as desired.
 - (b) Part (a) says that each pair of solutions (x_1, x_2) to the congruence equations $f(x) \equiv 0 \mod m$ and $f(x) \equiv 0 \mod n$ gives rise to a solution mod mn, and the Chinese remainder theorem says such a solution is *unique*. Therefore, counting the number of solutions to $f(x) \equiv 0 \mod mn$ is the same as counting the number of pairs (x_1, x_2) , which by definition, is N_1N_2 .
 - (c) By the previous part, the number of solutions can be found by computing the number of solutions to each of $x^2 \equiv 1 \mod m$, where m = 7, 16, 25, 27. Note that $x^2 \equiv 1 \mod 16$ has 4 solutions, and each of $x^2 \equiv 1 \mod 7, 25, 27$ have 2 solutions by midterm 1 review problem 6. This gives a total of $4 \cdot 2 \cdot 2 \cdot 2 = 32$ solutions.
- 3. Let (p,q) be a point on our curve, and consider the line of slope $m = \frac{q-2}{p-3}$ passing through (p,q) and (3,2). The equation of this line is y = 2+m(x-3), so plugging into the equation says $x^2-2(2+m(x-3))^2 = 1$. Grouping and dividing by the coefficient on x^2 gives $x^2 + \frac{4m(3m-2)}{1-2m^2}x \frac{3(6m^2-8m+3)}{1-2m^2} = 0$. Since (p,q) and (3,2) are rational points, we know that p and 3 are roots of this quadratic. The constant term is the product of the roots, so $3p = -\frac{3(6m^2-8m+3)}{1-2m^2}$, so $p = \frac{6m^2-8m+3}{2m^2-1}$. We have $q = 2 + m(p-3) = \frac{-2(2m^2-3m+1)}{2m^2-1}$. We have shown that any point (p,q) on the curve can be written in terms of the slope of the line connecting it to the point (3,2) (when such a slope is well-defined). A rational point has a rational slope m, and given any rational number m the point produced above has rational coordinates. The only points

our method miss are when the slope is not-well defined, i.e. the vertical line x = 3. Solving $9 - 2y^2 = 1$ says $y = \pm 2$, so the only point we have missed is (3, -2). Therefore any rational point is either (3, -2) or $(\frac{6m^2 - 8m + 3}{2m^2 - 1}, \frac{-2(2m^2 - 3m + 1)}{2m^2 - 1})$ for $m \in \mathbb{Q}$.

- 4. (a) An integer *n* is perfect if and only if $\sigma(n) = 2n$, or equivalently, if $\frac{\sigma(n)}{n} = 2$. Write $\sigma(n) = \sum_{d|n} d$, so $\frac{\sigma(n)}{n} = \sum_{d|n} \frac{d}{n}$. Since *d* is a divisor of *n*, we have n = dd' for some other divisor *d'*. Therefore, $\frac{d}{n} = \frac{1}{d'}$. Taking the sum over all divisors *d* will produce all possible choices of *d'*, so $\sum_{d|n} \frac{d}{n} = \sum_{d'|n} \frac{1}{d'}$. Therefore, *n* is perfect if and only if $\sum_{d|n} \frac{1}{d} = 2$.
 - (b) If $d \mid n$, then $kd \mid kn$ for any k > 1. Therefore, $\sum_{d \mid kn} \frac{1}{d} = \sum_{d \mid n} \frac{kd}{kn} + \text{stuff} = \sum_{d' \mid n} \frac{1}{d'} + \text{stuff} > 2$ since n is perfect. By part (a), this means kn is not perfect.
- 5. (a) Since $p \equiv 1 \mod 4$, -1 is a square mod p. Therefore, if a is a square mod p, then so is p-a. The pair (a, p-a) sums up to p, so we just need to count how many such pairs there are. We know there are $\frac{p-1}{2}$ quadratic residues between 1 and p-1, so there are $\frac{p-1}{4}$ such pairs. This says the sum is $\frac{p(p-1)}{4}$ as desired.
 - (b) We can write $\sum_{a=1}^{p-1} \left(\frac{a}{p}\right) a = \sum_{a \equiv \Box \mod p} a \sum_{a \not\equiv \Box \mod p} a$. By the same argument as part (a), if a is a non-square mod p then so is p a because -1 is a square mod p. Therefore, both sums are $\frac{p(p-1)}{4}$, and so cancel out. Thus, $\sum_{a=1}^{p-1} \left(\frac{a}{p}\right) a = 0$ as desired.
- 6. By Euler's criterion, $3^{(p-1)/2} \equiv \left(\frac{3}{p}\right) \mod p$. Therefore, we wish to show that $\left(\frac{3}{p}\right) = -1$. Note that $p \equiv 1 \mod 4$, so by quadratic reciprocity, we wish to show that $\left(\frac{p}{3}\right) = -1$. Also notice that $p \equiv (-1)^{2^n} + 1 \equiv 2 \mod 3$, and 2 is not a square mod 3. This proves what we wanted.