
Midterm 1 Review

Tim Smits

1. Find all integer solutions to the equation 147x + 258y = 369.

2. (a) Prove that if an − 1 is prime, that n is prime and a = 2.

(b) Prove that if an + 1 is prime, that n = 2k for some k and a is even.

3. Show that x3 + y3 + z3 = 400 has no integer solutions.

4. Show that 1
5n

5 + 1
3n

3 + 7
15n is an integer for all n ∈ Z.

5. Let a, b be integers with a, b > 1.

(a) Prove that gcd(a2, b2) = gcd(a, b)2.

(b) Prove that gcd(ka, kb) = k · gcd(a, b) for any integer k ≥ 1.

(c) Show that if (a2 − b2) | (a2 + b2) for some integers a, b, that (a2 − b2) | 2 gcd(a, b)2.

(d) Use part (c) to show that there are no integers a, b > 1 such that (a2 − b2) | (a2 + b2).

6. Let p > 2 be a prime. Show that x2 ≡ 1 mod pn has two solutions for all n ≥ 1.
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Hints

2. Recall the factorizations of xn − 1 and xn + 1 from homework 1.

3. Work mod 9.

4. Turn this into a divisibility condition and then use modular arithmetic.

5d. Reduce to the case where a, b are relatively prime.

6. Show that a solution of x2 ≡ 1 mod pn+1 gives a solution to x2 = 1 mod pn, and then induct.
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Solutions

1. Running the Euclidean algorithm,

258 = 147 · 1 + 111

147 = 111 · 1 + 36

111 = 36 · 3 + 3

36 = 3 · 12 + 0

which says gcd(147, 258) = 3. After back substituting, we find that (−7, 4) is one solution to
147x + 258y = 3, so (−861, 492) is a solution to 147x + 258y = 369. An arbitrary solution is
then of the form x = −861 + 86k, y = 492− 49k for k ∈ Z.

2. (a) Recall that an − 1 = (a − 1)(an−1 + . . . + 1). If a 6= 2, then a − 1 > 1 so an − 1 has a
non-trivial divisor. If n = ab with 1 < a, b < n, then 2n − 1 = 2ab − 1 = (2a)b − 1 =
(2a − 1)(2ab−a + . . . + 1) has 2a − 1 as a non-trivial divisor. Therefore, for an − 1 to be
prime, n must be prime and a = 2.

(b) Recall that for n odd, we have an + 1 = (a + 1)(an−1 − an−2 + . . . + 1). Write n = 2k`

for some k, ` with ` odd. If ` > 1, we have an + 1 = (a2
k

)` + 1 is divisible by a2
k

+ 1 > 1.

If a is odd, then a2
k

is also odd for any k, so a2
k

+ 1 is even, and therefore divisible by
2. Therefore, for an + 1 to be prime, n must be a power of 2 and a must be even.

3. Suppose that x3+y3+z3 = 400 had an integer solution. Working mod 9, this says x3+y3+z3 ≡
4 mod 9. The cubes mod 9 are 0, 1, 8, which are the same as −1, 0, 1 mod 9. This tells us that
the possible values of x3+y3+z3 mod 9 are 0, 1, 2, 3, 6, 7, 8. Therefore, since x3+y3+z3 = 400
has no solutions mod 9, it has no integer solutions.

4. Putting everything over a common denominator, we wish to show that 3n5+5n3+7n
15 is an

integer, or equivalently, that 15 | 3n5 + 5n3 + 7n for all n. It’s sufficient to show that this
expression is divisible by 3 and by 5. Mod 3, we have 3n5 + 5n3 + 7n ≡ 2n3 + n mod 3.
Plugging in n ≡ 0, 1, 2 mod 3 into 2n3 +n yields 0, 3, 18, which shows that 2n3 +n ≡ 0 mod 3,
i.e. 3 | 3n5 + 5n3 + 7n. Similarly, mod 5 we have 3n5 + 5n3 + 7n ≡ 3n5 + 2n mod 5.
Plugging in n ≡ −2,−1, 0, 1, 2 mod 5 into 3n5 + 5n3 + 7n yields −100,−5, 0, 5, 100, so that
3n5 + 2n ≡ 0 mod 5. This says 5 | 3n5 + 5n3 + 7n, so we’re done.

5. (a) See the week 3 discussion notes.

(b) Let d = gcd(a, b) and d′ = gcd(ka, kb). Since d | a and d | b, we have kd | ka and kd | kb,
so kd | d′. By Bezout’s lemma, we can write ax + by = d for some x, y ∈ Z. Multiplying
by k says kax + kby = kd. Since d′ | ka and d′ | kb, this says d′ | kd, so kd = d′.

(c) Suppose that a2 − b2 | (a2 + b2). Then since a2 − b2 | (a2 − b2), this says a2 − b2 divides
(a2 + b2) + (a2 − b2) = 2a2 and a2 − b2, divides (a2 + b2)− (a2 − b2) = 2b2. Therefore,
a2 − b2 | gcd(2a2, 2b2) = 2 gcd(a, b)2 by parts (a) and (b).

(d) Suppose that a2 − b2 | (a2 + b2), so we can write (a2 − b2)k = a2 + b2 for some k. If
gcd(a, b) = d > 1, we can write a = dm and b = d` for some m, `. Plugging in says
d2(m2 − `2)k = d2(m2 + `2), so m2 − `2 | (m2 + `2). By homework 2, gcd(m, `) = 1,
and by part (c), (m2 − `2) | 2. This says m2 − `2 = 1 or m2 − `2 = 2. In the first case,
we have (m − `)(m + `) = 1, which would mean m − ` = 1 and m + ` = 1. This has
no solutions with both m, ` positive. Therefore, (m − `)(m + `) = 2, so we must have
m− ` = 1 and m + ` = 2. However, this means 2m = 3, which has no integer solutions.
Therefore, there are no such a, b with a2 − b2 | (a2 + b2).

6. We prove this by induction. For the base case, suppose that x2 ≡ 1 mod p. Then p |
(x2 − 1) = (x + 1)(x − 1), so by Euclid’s lemma, we have p | (x + 1) or p | (x − 1), i.e.
x ≡ ±1 mod p. Now suppose that x2 ≡ 1 mod pn only has solutions x ≡ ±1 mod pn for some
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n. Note that ±1 mod pn+1 are solutions to x2 ≡ 1 mod pn+1. We now show that these are
the only solutions. Suppose that x2 ≡ 1 mod pn+1: this means that x2 = 1 + pn+1k for some
k, which means that x2 ≡ 1 mod pn. By assumption, this means that x ≡ ±1 mod pn, so
that x = ±1 + pn` for some `. Squaring, we find x2 = (±1 + pn`)2 = 1 + 2pn` + p2n`2.
Taking this mod pn+1, we have 1 ≡ x2 ≡ 1 + 2pn` mod pn+1. This says 2pn` ≡ 0 mod pn+1,
i.e. pn+1 | 2pn`. Since p > 2, this means p | `, so that ` = pm for some m. This says
x = ±1 + pn+1m, which then tells us that x ≡ ±1 mod pn+1 as desired. Therefore by
induction, the only solutions to x2 ≡ 1 mod pn are x ≡ ±1 mod pn.
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