Midterm 1 Review
Tim Smits

1. Find all integer solutions to the equation 147z 4 258y = 369.

2. (a) Prove that if ™ — 1 is prime, that n is prime and a = 2.

(b) Prove that if ™ + 1 is prime, that n = 2* for some k and a is even.
3. Show that 23 4+ 32 + 23 = 400 has no integer solutions.
4. Show that %n5 + %n?’ + 1—7571 is an integer for all n € Z.

5. Let a, b be integers with a,b > 1.

(a) Prove that ged(a?,b?) = ged(a, b)?.

(b) Prove that ged(ka, kb) = k - ged(a, b) for any integer k > 1.

(c) Show that if (a? — b?) | (a® + b?) for some integers a, b, that (a® — b?) | 2 ged(a, b)?.
(d) Use part (c) to show that there are no integers a,b > 1 such that (a? — b?) | (a? + b?).

6. Let p > 2 be a prime. Show that 22 = 1 mod p” has two solutions for all n > 1.



5d.

. Show that a solution of 2 = 1 mod p

Hints

. Recall the factorizations of 2™ — 1 and 2™ + 1 from homework 1.

. Work mod 9.

Turn this into a divisibility condition and then use modular arithmetic.

Reduce to the case where a, b are relatively prime.

"+l gives a solution to 2 = 1 mod p™, and then induct.



5.

6.

. Putting everything over a common denominator, we wish to show tha

Solutions

. Running the Euclidean algorithm,

258 =147-1+ 111
147 =111-1+4 36
111=36-3+3
36=3-12+0

which says ged(147,258) = 3. After back substituting, we find that (—7,4) is one solution to
147z + 258y = 3, so (—861,492) is a solution to 147z + 258y = 369. An arbitrary solution is
then of the form x = —861 + 86k, y = 492 — 49k for k € Z.

(a) Recall that a” —1=(a—1)(a" ' +...+1). Ifa#2,thena—1>1s0oa™ —1 has a
non-trivial divisor. If n = ab with 1 < a,b < n, then 2" — 1 = 2% — 1 = (29) -1 =
(2¢ —1)(29°=¢ 4 ... + 1) has 2% — 1 as a non-trivial divisor. Therefore, for a® — 1 to be
prime, n must be prime and a = 2.

(b) Recall that for n odd, we have a” +1 = (a+1)(a""' — a2 + ... +1). Write n = 2¥¢

for some k, ¢ with £ odd. If ¢ > 1, we have a” + 1 = (a2")’ +1 is divisible by " +1 > 1.

If a is odd, then a?" is also odd for any k, so a?’ +1is even, and therefore divisible by

2. Therefore, for a™ 4+ 1 to be prime, n must be a power of 2 and a must be even.

. Suppose that 23413 +23 = 400 had an integer solution. Working mod 9, this says 23 +33423 =

4 mod 9. The cubes mod 9 are 0, 1, 8, which are the same as —1,0,1 mod 9. This tells us that
the possible values of 23 +y3+22 mod 9 are 0,1, 2, 3,6, 7, 8. Therefore, since 23 +y3+ 23 = 400
has no solutions mod 9, it has no integer solutions.

t 3n°+5n°+7n is an
integer, or equivalently, that 15 | 3n® + 5n3 + Tn for all n. It’s sufficient to show that this
expression is divisible by 3 and by 5. Mod 3, we have 3n® + 5n3 4+ 7Tn = 2n® + n mod 3.
Plugging in n = 0, 1,2 mod 3 into 2n3 +n yields 0, 3, 18, which shows that 2n%4+n = 0 mod 3,
ie. 3| 3n° + 5n% + 7n. Similarly, mod 5 we have 3n® + 5n® + 7n = 3n® + 2n mod 5.
Plugging in n = —2,—1,0,1,2 mod 5 into 3n® + 5n3 + 7n yields —100, —5,0, 5,100, so that
3n5 4+ 2n = 0 mod 5. This says 5 | 3n°® + 5n + Tn, so we're done.

(a) See the week 3 discussion notes.

(b) Let d = ged(a,b) and d’' = ged(ka, kb). Since d | a and d | b, we have kd | ka and kd | kb,
so kd | d’. By Bezout’s lemma, we can write az 4+ by = d for some z,y € Z. Multiplying
by k says kax + kby = kd. Since d’' | ka and d’ | kb, this says d' | kd, so kd = d'.

(c) Suppose that a? — b? | (a® + b?). Then since a® — b? | (a® — b?), this says a? — b? divides
(a? + b%) + (a® — b%) = 2a? and a® — b?, divides (a® + b%) — (a® — b?) = 2b%. Therefore,
a? — b? | ged(2a?,2b%) = 2 ged(a, b)? by parts (a) and (b).

(d) Suppose that a? — b? | (a? + b?), so we can write (a? — b?)k = a? + b? for some k. If
ged(a,b) = d > 1, we can write a = dm and b = d¢ for some m,¢. Plugging in says
d*(m? — )k = d*(m? + £?), so m? — 2 | (m? + ¢%). By homework 2, ged(m,¥) = 1,
and by part (c), (m? — ¢?) | 2. This says m? — ¢ =1 or m? — (2 = 2. In the first case,
we have (m — £)(m + £) = 1, which would mean m — ¢ = 1 and m + £ = 1. This has
no solutions with both m, ¢ positive. Therefore, (m — £)(m + £) = 2, so we must have
m — ¢ =1 and m + ¢ = 2. However, this means 2m = 3, which has no integer solutions.
Therefore, there are no such a, b with a? — b? | (a® + b?).

We prove this by induction. For the base case, suppose that x> = 1modp. Then p |
(22 — 1) = (z + 1)(z — 1), so by Euclid’s lemma, we have p | (z + 1) or p | (z — 1), i.e.
x = +1 mod p. Now suppose that 2 = 1 mod p™ only has solutions x = +1 mod p™ for some



n. Note that =1 mod p™*! are solutions to 22 = 1 mod p"*'. We now show that these are
the only solutions. Suppose that 22 = 1 mod p™*': this means that 22 = 1 4 p"*'k for some
k, which means that 22 = 1 mod p”. By assumption, this means that z = 41 mod p", so
that * = 41 + p™¢ for some £. Squaring, we find 22 = (&1 + p™f)? = 1 + 2p™¢ + p?™ (2.
Taking this mod p"*!, we have 1 = 22 = 1 + 2p™¢ mod p"*'. This says 2p"¢ = 0 mod p" !,
ie. p"tl | 2p"f. Since p > 2, this means p | ¢, so that £ = pm for some m. This says
x = #+1 4 p"T'm, which then tells us that * = +1 mod p"*' as desired. Therefore by
induction, the only solutions to 22 = 1 mod p" are x = 41 mod p".



