Quiz 5 Solutions Tim Smits

1. Let $a, n \in \mathbb{N}$ with a > 1.

- (a) Prove that $\operatorname{ord}_{a^n-1}(a) = n$.
- (b) Deduce that $n \mid \varphi(a^n 1)$.

Solution:

- (a) Note that $a^n 1 \equiv 0 \mod a^n 1$, so that $a^n \equiv 1 \mod a^n 1$. Suppose that $a^d \equiv 1 \mod a^n 1$ for 1 < d < n. This says $a^n 1 \mid a^d 1$, which is clearly not possible. Therefore, $\operatorname{ord}_{a^n-1}(a) = n$.
- (b) Since $a^{\varphi(a^n-1)} \equiv 1 \mod a^n 1$ and $\operatorname{ord}_{a^n-1}(a) = n$, we immediately see that $n \mid \varphi(a^n 1)$.
- 2. Solve the following system of congruences:

 $\begin{cases} x \equiv 7 \mod{12} \\ x \equiv 3 \mod{10} \\ x \equiv 13 \mod{18} \end{cases}$

Solution: From the first equation, x = 7 + 12k for some $k \in \mathbb{Z}$. Plug into the second equation, so that $7 + 12k \equiv 3 \mod 10$ says $2k \equiv 6 \mod 10$, i.e. 2k = 6 + 10m for some $m \in \mathbb{Z}$. This says k = 3 + 5m, so x = 43 + 60m. Plugging into the third equation says $43 + 60m \equiv 13 \mod 18$, so that $6m \equiv 6 \mod 18$. This says $6m = 6 + 18\ell$ for some $\ell \in \mathbb{Z}$, so that $m = 1 + 3\ell$. This gives $x = 103 + 180\ell$, so that $x \equiv 103 \mod 180$.