Quiz 3 Solutions Tim Smits

1. Prove that there is no integer $x \in \mathbb{Z}$ for which $10x \equiv 7 \mod 35$.

Solution: Suppose otherwise, that there is such an x. Then $10x \equiv 7 \mod 35$ says 10x+35y = 7 for some integer y. However, 5 divides the left hand side, while $5 \nmid 7$, a contradiction. Therefore, no such x exists.

2. Compute gcd(253, 649), and find a solution (x, y) to 253x + 649y = gcd(253, 649).

Solution: Run the Euclidean algorithm:

 $649 = 2 \cdot 253 + 143$ $253 = 1 \cdot 143 + 110$ $143 = 1 \cdot 110 + 33$ $110 = 3 \cdot 33 + 11$ $33 = 3 \cdot 11$

so that gcd(253, 649) = 11. Running the back-substitution, $11 = 110 - 3 \cdot 33 = 4 \cdot 110 - 3 \cdot 143 = 4 \cdot 253 - 7 \cdot 143 = 18 \cdot 253 - 7 \cdot 649$, so that (18, -7) is a solution.

3. For all $n \in \mathbb{N}$, let S(n) denote the sum of the digits of n. Prove for all $n \in \mathbb{N}$ that $S(n) \equiv n \mod 9$.

Solution: Write $n = a_d a_{d-1} \dots a_0$, where a_i are the digits of n. By definition, we see that $n = a_d 10^d + a_{d-1} 10^{d-1} + \dots + a_0$. Since $10 \equiv 1 \mod 9$, this says $n \equiv a_d + a_{d-1} + \dots + a_0 \equiv S(n) \mod 9$ as desired.