
Homework 9 Solutions

Tim Smits

1.

(a) Compute ord100(7).

(b) Reduce 7111 mod 100.

Solution:

(a) 74 = 2401 ≡ 1 mod 100, so ord100(7) = 4.

(b) 111 = 27 · 4 + 3, so 7111 ≡ 73 mod 100 ≡ 43 mod 100.

2. Prove that a4 ≡ 1 mod 15 when (a, 15) = 1.

Solution: Firstly, the condition (a, 15) = 1 is equivalent to saying that (a, 3) = 1 and (a, 5) =
1. By Fermat’s little theorem, a2 ≡ 1 mod 3 and a4 ≡ 1 mod 5 for all a with (a, 3) = 1 and
(a, 5) = 1. Squaring the first equation also says a4 ≡ 1 mod 3. This says 3 | a4−1 and 5 | a4−1
so that 15 | a4 − 1 says a4 ≡ 1 mod 15 for all a such that (a, 15) = 1.

3. Find d such that ad ≡ 1 mod 2000 with 1 < d < 800 for all a such that (a, 2000) = 1.

Solution: Write 2000 = 16 · 125. The condition (a, 2000) = 1 is equivalent to saying that
(a, 16) = 1 and (a, 125) = 1. By Euler’s theorem, a8 ≡ 1 mod 16 and a100 ≡ 1 mod 125. Notice
that lcm(8, 100) = 200, so that a200 ≡ 1 mod 16 and a200 ≡ 1 mod 125. The Chinese remainder
theorem then says a200 ≡ 1 mod 2000.

4.

(a) Check that a2 ≡ 1 mod 8 for all a ∈ (Z/8Z)×.

(b) Prove that for any e ∈ N and a ∈ Z, if a ≡ 1 mod 2e then a2 ≡ 1 mod 2e+1.

(c) Prove for e ≥ 3 that a2
e−2 ≡ 1 mod 2e.

Solution:

(a) This is clear.

(b) If a ≡ 1 mod 2e, write a = 1 + 2ek for some k ∈ Z. Squaring says a2 = 1 + 2e+1k + 4ek2,
so taking this mod 2e+1 says a2 ≡ 1 mod 2e+1.

(c) The base case e = 3 is part a). Suppose that a2
e−2 ≡ 1 mod 2e. Then write a2

e−2

= 1+2ek

for some k ∈ Z. Squaring says a2
e−1

= 1 + 2e+1k + 4ek2, so taking this mod 2e+1 says
a2

e−1 ≡ 1 mod 2e+1. By induction, this proves the result for all e ≥ 3.
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5. Find d′ < d from problem 3 such that ad
′ ≡ 1 mod 2000.

Solution: By problem 4, a4 ≡ 1 mod 16. Since 100 = 16 · 8 + 4, this says a100 ≡ 1 mod 16.
The Chinese remainder theorem then says that a100 ≡ 1 mod 2000, whenever (a, 2000) = 1.

6.

(a) Prove that λ(n) ≤ ϕ(n) for all n ∈ N.

(b) Prove that for all n ∈ N, that aλ(n) ≡ 1 mod n whenever (a, n) = 1.

Solution:

(a) Write n = pe11 . . . pekk as a product of prime powers. By definition, λ(peii ) ≤ ϕ(peii ) for all
i, so that λ(n) = lcm(λ(pe11 ), . . . , λ(pekk )) ≤ λ(pe11 ) . . . λ(pekk ) ≤ ϕ(pe11 ) . . . ϕ(pekk ) = ϕ(n).

(b) Write n = pe11 . . . pekk as a product of prime powers. Then (a, n) = 1 is the same as saying
(a, peii ) = 1 for all i. First, we show that aλ(p

e) ≡ 1 mod pe for all prime powers. If

p = 2, then a2
e−2 ≡ 1 mod 2e by problem 4, and by definition, λ(2e) = 2e−2, so that

aλ(p
e) ≡ 1 mod pe. If p is odd, λ(pe) = ϕ(pe) so by Euler’s theorem, aλ(p

e) ≡ 1 mod pe.
This proves aλ(p

e) ≡ 1 mod pe for all prime powers pe.

Therefore, aλ(p
ei
i ) ≡ 1 mod peii for all i. Since λ(peii ) | lcm(λ(pe11 ), . . . , λ(pekk )) = λ(n) for

all i, this says aλ(n) ≡ 1 mod peii for all i. By the Chinese remainder theorem, we then
find aλ(n) ≡ 1 mod n as desired.

7. Find all n such that λ(n) = ϕ(n).

Solution: Write n = pe11 . . . pekk , so that λ(n) = lcm(λ(pe11 ), . . . , λ(pekk )) and ϕ(n) = ϕ(pe1i ) . . . ϕ(pekk ).
Recall that lcm(a1, . . . , an) = a1 . . . an if and only if all ai are relatively prime. If λ(peii ) are
not all relatively prime, then clearly lcm(λ(pe11 ), . . . , λ(pekk )) < λ(pe11 ) . . . λ(pekk ), which will say
that λ(n) < ϕ(n). Therefore, we require that all λ(peii ) are relatively prime. If p is odd, then
λ(pe) = ϕ(pe) is even. So there can be at most one odd prime in the factorization of n. If
p = 2, then λ(2e) is even unless e = 0, 1. Therefore any n of the form n = pk or n = 2pk for
p odd will work. Since λ(4) = ϕ(4) = 2, and λ(2) = ϕ(2) = 1 and λ(1) = ϕ(1) = 1, we also
see that n = 1, 2, 4 will work. Since λ(2e) < ϕ(2e) for e ≥ 3, these are the only possible cases
where n is a power of 2 that will work.

We then see that the only possibles choices for n are n = 1, 2, 4, pk, 2pk for p odd, and it’s clear
that all such choices work by definition of λ(n).

8.

(a) Prove that if f(x) ≡ g(x) mod n, that f ′(x) ≡ g′(x) mod n.

(b) Prove that [f(x)+g(x)]′ = [f(x)]′+[g(x)]′, [cf(x)]′ = [c][f(x)]′ and [f(x)g(x)]′ = [f(x)]′[g(x)]+
[f(x)][g(x)]′.

Solution:
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(a) Write f(x) = amx
m+. . .+a0 and g(x) = bmx

m+. . .+b0 for ai, bi ∈ Z where the coefficients
are allowed to be 0. If f(x) ≡ g(x) mod n, this says n | f(x)−g(x) = (am−bm)xm+ . . .+
(a0− b0), so that ai ≡ bi mod n for all 0 ≤ i ≤ m. Since f ′(x) = mamx

m−1 + . . .+a1 and
g′(x) = mbmx

m−1 + . . . + b1, we then immediately see that n | i(ai − bi) for 1 ≤ i ≤ m,
so that f ′(x) ≡ g′(x) mod n.

(b) Pick representatives f(x), g(x) ∈ Z[x] for the classes [f(x)] and [g(x)] ∈ (Z/nZ)[x]. By the
usual properties of the derivative, we have (f(x)+g(x))′ = f ′(x)+g′(x), (cf(x))′ = cf ′(x)
and (f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x). As [f(x)]′ = [f ′(x)] by part a), reducing
mod n then immediately says [f(x) + g(x)]′ = [f(x)]′ + [g(x)]′, [cf(x)]′ = [c][f(x)]′ and
[f(x)g(x)]′ = [f(x)]′[g(x)] + [f(x)][g(x)]′.

9. Prove that a is a repeated root of f(x) ∈ (Z/nZ)[x] if and only if f(a) = f ′(a) = 0.

Solution: Suppose that a is a repeated root of f(x), so that f(x) = (x − a)2g(x) for some
g(x) ∈ (Z/nZ)[x]. Then f ′(x) = 2(x − a)g(x) + (x − a)2g′(x), which says f ′(a) = 0. On the
other hand, suppose that f(a) = f ′(a) = 0. By the factor theorem, write f(x) = (x − a)h(x)
for some h(x) ∈ (Z/nZ)[x]. Then f ′(x) = h(x) + (x− a)h′(x) says f ′(a) = h(a) = 0. We may
then write h(x) = (x − a)g(x) for some g(x) ∈ (Z/nZ)[x], so that f(x) = (x − a)2g(x) says a
is a repeated root of f(x).

10. Find a non-constant polynomial f(x) ∈ (Z/nZ)[x] such that f ′(x) = 0.

Solution: Take f(x) = xn, so that f ′(x) = nxn−1 ≡ 0 mod n.
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