Homework 9 Solutions

Tim Smits

(a) Compute ordigp(7).
(b) Reduce 7' mod 100.

Solution:
(a) 7* = 2401 = 1 mod 100, so ord;po(7) = 4.
(b) 111 =27-4+ 3, so 7" = 73 mod 100 = 43 mod 100.

2. Prove that a* =1 mod 15 when (a, 15) = 1.

Solution: Firstly, the condition (a,15) = 1 is equivalent to saying that (a,3) =1 and (a,5) =
1. By Fermat’s little theorem, a®> = 1 mod 3 and a* = 1 mod 5 for all a with (a,3) = 1 and
(a,5) = 1. Squaring the first equation also says a* = 1 mod 3. This says 3 | a* —1and 5 | a* —1
so that 15| a* — 1 says a* = 1 mod 15 for all @ such that (a,15) = 1.

3. Find d such that a? = 1 mod 2000 with 1 < d < 800 for all a such that (a,2000) = 1.

Solution: Write 2000 = 16 - 125. The condition (a,2000) = 1 is equivalent to saying that
(a,16) = 1 and (a,125) = 1. By Euler’s theorem, a® = 1 mod 16 and a'°® = 1 mod 125. Notice
that lem(8,100) = 200, so that a**° = 1 mod 16 and a?°° = 1 mod 125. The Chinese remainder
theorem then says a2°° = 1 mod 2000.

4.
(a) Check that a? =1 mod 8 for all a € (Z/8Z)*.
(b) Prove that for any e € N and a € Z, if a = 1 mod 2° then a? = 1 mod 2°+1,

(c) Prove for e > 3 that a2~ =1 mod 2¢.

Solution:
(a) This is clear.

(b) If a = 1 mod 2¢, write a = 1 + 2°k for some k € Z. Squaring says a? = 1 + 2¢F1k + 4°k?
so taking this mod 2¢*! says a? = 1 mod 2¢*+1.

(¢) The base case e = 3 is part a). Suppose that a?* = 1mod 2¢. Then write a2 = 142
for some k € Z. Squaring says a2 =1+ 2¢+1k 4 4°k2, so taking this mod 2°*! says
a®” =1mod 2¢t!. By induction, this proves the result for all e > 3.




5. Find d’ < d from problem 3 such that a? =1 mod 2000.

Solution: By problem 4, a* = 1 mod 16. Since 100 = 16 - 8 + 4, this says a'%° = 1 mod 16.
The Chinese remainder theorem then says that a'% = 1 mod 2000, whenever (a,2000) = 1.

6.
(a) Prove that A(n) < ¢(n) for all n € N.

(b) Prove that for all n € N, that a*™ = 1 mod n whenever (a,n) = 1.

Solution:

(a) Write n = p{'...p;* as a product of prime powers. By definition, A(p;") < ¢(p5*) for all
i, so that A(n) = lem(A(P7"), ..., APF)) S A@T) - APe") < @) .- o) = ¢(n).

(b) Write n = pi'...pg* as a product of prime powers. Then (a,n) = 1 is the same as saying
(a,pi") = 1 for all 4. First, we show that a*?) = 1 mod p° for all prime powers. If
p = 2, then a?> = 1mod 2° by problem 4, and by definition, A(2¢) = 2¢72, so that
a*?) = 1 mod p¢. If p is odd, A(p®) = ¢(p°) so by Euler’s theorem, a*?) = 1 mod pe.
This proves ¢*®“) = 1 mod p® for all prime powers p¢.

Therefore, a*®:') = 1 mod p¢* for all i. Since A(p%*) | lem(A(pS'), ..., A(pgr)) = A(n) for
all 7, this says a*(™) = 1 mod p;* for all 4. By the Chinese remainder theorem, we then
find a*(™) =1 mod n as desired.

7. Find all n such that A(n) = ¢(n).

Solution: Write n = p{'...p:*, so that A(n) = lem(A(pT!), ..., A(py*)) and ¢(n) = ¢(pi*) ... (1},

Recall that lem(ag,...,a,) = a1...a, if and only if all a; are relatively prime. If A(p;*) are
not all relatively prime, then clearly lem(A(pS!), ..., A(pp*)) < A(®T') ... A(py"), which will say
that A(n) < ¢(n). Therefore, we require that all A(p;*) are relatively prime. If p is odd, then
A(p®) = ¢(p°) is even. So there can be at most one odd prime in the factorization of n. If
p = 2, then A\(2°) is even unless e = 0,1. Therefore any n of the form n = p¥ or n = 2p* for
p odd will work. Since A(4) = ¢(4) = 2, and A(2) = ¢(2) = 1 and A(1) = ¢(1) = 1, we also
see that n = 1,2,4 will work. Since A\(2¢) < ¢(2°) for e > 3, these are the only possible cases
where n is a power of 2 that will work.

We then see that the only possibles choices for n are n = 1, 2,4, p*, 2pF for p odd, and it’s clear
that all such choices work by definition of A(n).

8.

(a) Prove that if f(z) = g(x) mod n, that f'(z) = ¢’(z) mod n.

(b) Prove that [f(z)+g(z)]" = [f(2)]'+[g(=)]", [cf (2)]" = [c][f (2)]" and [f (z)g(2)]" = [f (2)]'[g(x)]+

[f(@)]g (=)

Solution:
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(a) Write f(z) = ama™+. . .+ag and g(z) = bpa™+. . .4bg for a;,b; € Z where the coefficients
are allowed to be 0. If f(z) = g(z) mod n, thissays n | f(z)—g(x) = (am —bm)x™+. ..+
(ag —bp), so that a; = b; mod n for all 0 < i < m. Since f'(z) = mapz™ 1 +...+a; and
g'(x) = mbypa™ ! + ... + by, we then immediately see that n | i(a; — b;) for 1 < i < m,
so that f/(z) = ¢’(x) mod n.

(b) Pick representatives f(x), g(x) € Z[z] for the classes [f(z)] and [g(z)] € (Z/nZ)[x]. By the
usual properties of the derivative, we have (f(x )+g( ) = fl(x)+d (x), (cf(z)) =cf'(x)
and (f(z)g(x))" = f(x)g(z) + f(x)g'(x). As [f(z)]" = [f'(x)] by part a), reducing
mod n then immediately says [f(z) + g(z)] = [f(fv)]’ +lg@)), [ef(@)]" = [][f(2)] and

[f(@)g(@)]" = [f(@)]'[g(=)] + [f (2)][g(x))".

9. Prove that a is a repeated root of f(z) € (Z/nZ)[x] if and only if f(a) = f'(a) = 0.

Solution: Suppose that a is a repeated root of f(x), so that f(z) = (z — a)?g(z) for some
g(z) € (Z/nZ)[x]. Then f'(x) = 2(x — a)g(z) + (z — a)?¢’(x), which says f’(a) = 0. On the
other hand, suppose that f(a) = f’(a) = 0. By the factor theorem, write f(z) = (x — a)h(x)
for some h(x) € (Z/nZ)[x]. Then f'(z) = h(x) + (x — a)h/(z) says f'(a) = h(a) = 0. We may
then write h(z) = (x — a)g(x) for some g(z) € (Z/nZ)[z], so that f(x) = (x — a)?g(x) says a
is a repeated root of f(z).

10. Find a non-constant polynomial f(x) € (Z/nZ)[x] such that f/'(x) =0

Solution: Take f(r) = 2™, so that f/'(x) = nz"~! = 0 mod n.
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