
Homework 7 Solutions

Tim Smits

1. Let p be a prime. Prove that if a2 ≡ 1 mod p, then a ≡ 1 mod p or a ≡ −1 mod p.

Solution: If a2 ≡ 1 mod p, this says p | a2 − 1 = (a − 1)(a + 1). Since p is prime, Euclid’s
lemma says p | (a− 1) or p | (a + 1), i.e. a ≡ 1 mod p or a ≡ −1 mod p.

2.

(a) Reduce (p− 1)! mod p for p = 2, 3, 5, 7, 11.

(b) Prove that if p is prime, that (p− 1)! ≡ −1 mod p.

Solution:

(a) They all reduce to −1 mod p.

(b) This is trivial for p = 2, 3 so let p ≥ 5. Since p is is prime, each integer 2 ≤ x ≤ p − 2
is invertible mod p. Further, problem 1 says the only residue classes that are their own
inverse mod p are 1 mod p and −1 mod p. Therefore, for each integer 2 ≤ x ≤ p− 2, the
residue class x mod p has as an inverse some other distinct residue class y mod p for some
integer 2 ≤ y ≤ p−2. Since there are p−3 integers in this range and this number is even,
each residue class pairs up with an inverse, so we see that 2 · 3 · . . . · (p − 2) ≡ 1 mod p.
This then says (p− 1)! ≡ 1 · 2 · . . . · (p− 1) ≡ 1 · (p− 1) ≡ −1 mod p.

3. For n = 4, 6, 8, 9, reduce (n− 1)! mod n. Then prove that (n− 1)! ≡ 0 mod n for all composite
n ≥ 4.

Solution: (n− 1)! ≡ 0 mod n for n = 6, 8, 9 and (n− 1) ≡ 2 mod n for n = 4.

To prove the result, this is equivalent to showing that n | (n−1)!, which is how we will approach
the problem. Firstly, it’s sufficient to check that if some prime power pe || n that pe | (n− 1)!,
because then by unique factorization, all the prime powers in the factorization of n divide
(n− 1)!, so that n | (n− 1)!. If n is not a prime power, then pe is a non-trivial divisor of n, and
therefore pe < n so that pe appears as one of the terms in (n− 1)!, and so we are immediately
done. If n = pe is a prime power for some e ≥ 2, we need there to be enough multiples of p
appearing as terms in (pe − 1)!. Note that p, p2, . . . , pe−1 are all terms that appear as terms in

(pe − 1)!, so if e > 2 we have at least 1 + 2 + . . . + (e− 1) = e(e−1)
2 copies of p appearing, and

e(e−1)
2 ≥ e for e > 2, so we are good. The last case we have to handle is if e = 2. In this case,

n = p2, so we need some other multiple of p to divide (p2− 1)!. We see that 2p < p2− 1 for all
p > 2, so we are good. This leaves the only exceptional case as n = 22 = 4, in which case we
saw the result is not true.

4. Suppose you know the following: (1552756)! ≡ −1 mod 1552757, (1479406)! ≡ 0 mod 1479407,
(5016358)! ≡ 0 mod 5016359 and (6424992)! ≡ −1 mod 6424993. Which numbers are prime and
which are composite?
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Solution: By the previous two problems, we can say that 1552757 and 6424993 are prime,
while 1479407 and 5016359 are composite.

5. The following exercise is a primality test based on Fermat’s little theorem.

(a) If 25733348 ≡ 5408246 mod 5733349, can you determine from this if 5733349 is prime or com-
posite?

(b) If 53163128 ≡ 1706983 mod 3163129, can you determine from this if 3163129 is prime or com-
posite?

(c) If 32182020 ≡ 1 mod 2182021, can you determine from this if 2182021 is prime or composite?

(d) If 2340560 ≡ 1 mod 340561, 3340560 ≡ 1 mod 340561, 5340560 ≡ 1 mod 340561, and 7340560 ≡
1 mod 340561, can you determine from this if 340561 is prime or composite?

(e) Can this primality test give false negatives? False positives? For the numbers where the test
didn’t tell you if the number was prime or not, check with a computer to see if they are.

Solution:

(a) This is not prime by the contrapositive of Fermat’s little theorem.

(b) This is also not prime by the same reasoning.

(c) We cannot determine if this number is prime or not from Fermat’s little theorem alone.

(d) Same as above, the extra congruence information does not tell us anything.

(e) The point is that Fermat’s little theorem cannot give false negatives if an 6≡ 1 mod n,
then n is necessarily composite. However, it can give false negatives, e.g. 340561.

6. Compute the following:

(a) ϕ(75)

(b) ϕ(360)

(c) ϕ(7000)

(d) ϕ(22041360) where 22041360 = 24 · 32 · 5 · 113 · 23

Solution: Use the formula ϕ(n) = n
∏

p|n(1− 1
p ).

(a) ϕ(75) = 40.

(b) ϕ(360) = 96.

(c) ϕ(7000) = 2400.

(d) ϕ(22041360) = 5111040.

7. Reduce the following mod n.

(a) 431250 mod 360
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(b) 2100212012 mod 7000

(c) 54819710726 mod 22041360

Solution:

(a) By Euler’s theorem, 4396 ≡ 1 mod 360. Then 1250 ≡ 2 mod 96, so 431250 ≡ 432 ≡
49 mod 360.

(b) Since 7000 = 23 · 53 · 7, we can reduce 212012 modulo 8, 125, and 7 and use the Chi-
nese remainder theorem to glue the information back together. Since 212012 ≡ 0 mod 8,
212012 ≡ 96 mod 125, and 212012 ≡ 1 mod 7, (use Euler’s theorem to see the second and
third relations), this says we are looking for the solution to the system x ≡ 0 mod 8,
x ≡ 96 mod 125, and x ≡ 1 mod 7. This is given by x ≡ 4096 mod 7000, so 212012 ≡
4096 mod 7000.

(c) We can use the factorization 22041360 = 24 · 32 · 5 · 113 · 23 and the same method in
part (b) to do this computation. The details are more annoying, so they are omitted.
Eventually you will find that 54819710726 mod 22041360 ≡ 15625 mod 22041360.

8. Reduce 100101
102

mod 13.

Solution: By first reducing mod 13, we need to compute 9101
102

mod 13. By Fermat’s little
theorem, 912 ≡ 1 mod 13, so we need to compute the exponent mod 12. We see 101102 ≡
5102 mod 12, and since ϕ(12) = 4, this says 54 ≡ 1 mod 12 by Euler’s theorem. Therefore

5102 ≡ 52 ≡ 1 mod 12, so that 9101
102 ≡ 9 mod 13.
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