Homework 7 Solutions Tim Smits

1. Let p be a prime. Prove that if $a^2 \equiv 1 \mod p$, then $a \equiv 1 \mod p$ or $a \equiv -1 \mod p$.

Solution: If $a^2 \equiv 1 \mod p$, this says $p \mid a^2 - 1 = (a - 1)(a + 1)$. Since p is prime, Euclid's lemma says $p \mid (a - 1)$ or $p \mid (a + 1)$, i.e. $a \equiv 1 \mod p$ or $a \equiv -1 \mod p$.

2.

- (a) Reduce $(p-1)! \mod p$ for p = 2, 3, 5, 7, 11.
- (b) Prove that if p is prime, that $(p-1)! \equiv -1 \mod p$.

Solution:

- (a) They all reduce to $-1 \mod p$.
- (b) This is trivial for p = 2, 3 so let $p \ge 5$. Since p is is prime, each integer $2 \le x \le p-2$ is invertible mod p. Further, problem 1 says the only residue classes that are their own inverse mod p are 1 mod p and $-1 \mod p$. Therefore, for each integer $2 \le x \le p-2$, the residue class $x \mod p$ has as an inverse some other distinct residue class $y \mod p$ for some integer $2 \le y \le p-2$. Since there are p-3 integers in this range and this number is even, each residue class pairs up with an inverse, so we see that $2 \cdot 3 \cdot \ldots \cdot (p-2) \equiv 1 \mod p$. This then says $(p-1)! \equiv 1 \cdot 2 \cdot \ldots \cdot (p-1) \equiv 1 \cdot (p-1) \equiv -1 \mod p$.

3. For n = 4, 6, 8, 9, reduce $(n - 1)! \mod n$. Then prove that $(n - 1)! \equiv 0 \mod n$ for all composite $n \ge 4$.

Solution: $(n-1)! \equiv 0 \mod n$ for n = 6, 8, 9 and $(n-1) \equiv 2 \mod n$ for n = 4.

To prove the result, this is equivalent to showing that $n \mid (n-1)!$, which is how we will approach the problem. Firstly, it's sufficient to check that if some prime power $p^e \mid \mid n$ that $p^e \mid (n-1)!$, because then by unique factorization, all the prime powers in the factorization of n divide (n-1)!, so that $n \mid (n-1)!$. If n is not a prime power, then p^e is a non-trivial divisor of n, and therefore $p^e < n$ so that p^e appears as one of the terms in (n-1)!, and so we are immediately done. If $n = p^e$ is a prime power for some $e \ge 2$, we need there to be enough multiples of pappearing as terms in $(p^e - 1)!$. Note that p, p^2, \ldots, p^{e-1} are all terms that appear as terms in $(p^e - 1)!$, so if e > 2 we have at least $1 + 2 + \ldots + (e - 1) = \frac{e(e-1)}{2}$ copies of p appearing, and $\frac{e(e-1)}{2} \ge e$ for e > 2, so we are good. The last case we have to handle is if e = 2. In this case, $n = p^2$, so we need some other multiple of p to divide $(p^2 - 1)!$. We see that $2p < p^2 - 1$ for all p > 2, so we are good. This leaves the only exceptional case as $n = 2^2 = 4$, in which case we saw the result is not true.

4. Suppose you know the following: $(1552756)! \equiv -1 \mod 1552757, (1479406)! \equiv 0 \mod 1479407, (5016358)! \equiv 0 \mod 5016359$ and $(6424992)! \equiv -1 \mod 6424993$. Which numbers are prime and which are composite?

Solution: By the previous two problems, we can say that 1552757 and 6424993 are prime, while 1479407 and 5016359 are composite.

- 5. The following exercise is a primality test based on Fermat's little theorem.
 - (a) If $2^{5733348} \equiv 5408246 \mod 5733349$, can you determine from this if 5733349 is prime or composite?
- (b) If $5^{3163128} \equiv 1706983 \mod 3163129$, can you determine from this if 3163129 is prime or composite?
- (c) If $3^{2182020} \equiv 1 \mod 2182021$, can you determine from this if 2182021 is prime or composite?
- (d) If $2^{340560} \equiv 1 \mod 340561$, $3^{340560} \equiv 1 \mod 340561$, $5^{340560} \equiv 1 \mod 340561$, and $7^{340560} \equiv 1 \mod 340561$, can you determine from this if 340561 is prime or composite?
- (e) Can this primality test give false negatives? False positives? For the numbers where the test didn't tell you if the number was prime or not, check with a computer to see if they are.

Solution:

- (a) This is not prime by the contrapositive of Fermat's little theorem.
- (b) This is also not prime by the same reasoning.
- (c) We cannot determine if this number is prime or not from Fermat's little theorem alone.
- (d) Same as above, the extra congruence information does not tell us anything.
- (e) The point is that Fermat's little theorem cannot give false negatives if $a^n \not\equiv 1 \mod n$, then n is necessarily composite. However, it can give false negatives, e.g. 340561.

6. Compute the following:

- (a) $\varphi(75)$
- (b) $\varphi(360)$
- (c) $\varphi(7000)$
- (d) $\varphi(22041360)$ where $22041360 = 2^4 \cdot 3^2 \cdot 5 \cdot 11^3 \cdot 23$

Solution: Use the formula $\varphi(n) = n \prod_{p|n} (1 - \frac{1}{p})$.

- (a) $\varphi(75) = 40$.
- (b) $\varphi(360) = 96.$
- (c) $\varphi(7000) = 2400.$
- (d) $\varphi(22041360) = 5111040.$
- **7.** Reduce the following mod n.
 - (a) $43^{1250} \mod 360$

- (b) $21002^{12012} \mod 7000$
- (c) $5^{4819710726} \mod 22041360$

Solution:

- (a) By Euler's theorem, $43^{96} \equiv 1 \mod 360$. Then $1250 \equiv 2 \mod 96$, so $43^{1250} \equiv 43^2 \equiv 49 \mod 360$.
- (b) Since $7000 = 2^3 \cdot 5^3 \cdot 7$, we can reduce 2^{12012} modulo 8, 125, and 7 and use the Chinese remainder theorem to glue the information back together. Since $2^{12012} \equiv 0 \mod 8$, $2^{12012} \equiv 96 \mod 125$, and $2^{12012} \equiv 1 \mod 7$, (use Euler's theorem to see the second and third relations), this says we are looking for the solution to the system $x \equiv 0 \mod 8$, $x \equiv 96 \mod 125$, and $x \equiv 1 \mod 7$. This is given by $x \equiv 4096 \mod 7000$, so $2^{12012} \equiv 4096 \mod 7000$.
- (c) We can use the factorization $22041360 = 2^4 \cdot 3^2 \cdot 5 \cdot 11^3 \cdot 23$ and the same method in part (b) to do this computation. The details are more annoying, so they are omitted. Eventually you will find that $5^{4819710726} \mod 22041360 \equiv 15625 \mod 22041360$.

8. Reduce $100^{101^{102}} \mod 13$.

Solution: By first reducing mod 13, we need to compute $9^{101^{102}} \mod 13$. By Fermat's little theorem, $9^{12} \equiv 1 \mod 13$, so we need to compute the exponent mod 12. We see $101^{102} \equiv 5^{102} \mod 12$, and since $\varphi(12) = 4$, this says $5^4 \equiv 1 \mod 12$ by Euler's theorem. Therefore $5^{102} \equiv 5^2 \equiv 1 \mod 12$, so that $9^{101^{102}} \equiv 9 \mod 13$.