Homework 6 Solutions Tim Smits

1. Define \sim on \mathbb{R} by $x \sim y \iff x - y \in \mathbb{Z}$. Prove that \sim is an equivalence relation.

Solution: Note that for any $x \in \mathbb{R}$, $x \sim x$ because $x - x = 0 \in \mathbb{Z}$. If $x \sim y$, then $y - x = -(x - y) \in \mathbb{Z}$ so that $y \sim x$. Finally, if $x \sim y$ and $y \sim z$, then $x - z = (x - y) + (y - z) \in \mathbb{Z}$, so that $x \sim z$.

2. What is [.3]? What is [1]? What is $[\pi]$?

Solution: $[.3] = \{.3 + k : k \in \mathbb{Z}\}, [1] = \mathbb{Z}, \text{ and } [\pi] = \{\pi + k : k \in \mathbb{Z}\}.$

3. Give a complete set of representatives for the equivalence relation \sim .

Solution: The claim is that [0, 1) is a set of representatives for \sim . Firstly, note that each class [x] for $x \in [0, 1)$ is different, because no two real numbers in the interval [0, 1) differ by an integer. Next, for $x \in \mathbb{R}$, write $c = x - \lfloor x \rfloor \in [0, 1)$. This says $x - c = \lfloor x \rfloor \in \mathbb{Z}$, so that $x \sim c$. This says for any $x \in \mathbb{R}$, that [x] has a representative in [0, 1) as desired.

- **4.** Which of the following are well-defined functions on \mathbb{R}/\sim ?
- (a) f([x]) = 2x
- (b) g([x]) = [2x]
- (c) $h([x]) = [\frac{1}{2}x]$
- (d) $u([x]) = [x^2]$

Solution:

- (a) Not well-defined; [1] = [2] but $2 \neq 4$.
- (b) Well-defined; if [x] = [y], then y = x + k for some $k \in \mathbb{Z}$. Then g([y]) = g([x + k]) = [2(x + k)] = [2x + 2k] = [2x] because $2k \in \mathbb{Z}$.
- (c) Not well-defined; [1] = [2] but $[\frac{1}{2}] \neq [1]$,
- (d) Not well-defined; $[\frac{1}{3}] = [\frac{4}{3}]$, but $[\frac{1}{9}] \neq [\frac{16}{9}] = [\frac{7}{9}]$.

5. Define $f : \mathbb{R}/ \to \mathbb{R}^2$ by $f([x]) = (\cos(2\pi x), \sin(2\pi x))$. Show that f is well-defined, injective, and find it's image.

Solution: Suppose that [x] = [y], then y = x + k for some $k \in \mathbb{Z}$. Then $f([y]) = f([x+k]) = (\cos(2\pi(x+k)), \sin(2\pi(x+k))) = (\cos(2\pi x), \sin(2\pi x)) = f([x])$ since cosine and sine are 2π -periodic, so that f is well-defined. Now suppose that f([x]) = f([y]), this says $\cos(2\pi x) = \cos(2\pi y)$ and $\sin(2\pi x) = \sin(2\pi y)$. This then says $2\pi y = 2\pi k + 2\pi x$ for some $k \in \mathbb{Z}$, or equivalently, y = x + k, so that [x] = [y]. This then says that f is injective. Finally, it's clear that the image of f is simply the unit circle.

6. Using the equivalence relation on the set $X = \mathbb{Z}^2 \setminus \{(0,0)\}$ defined by $(a,b) \sim (c,d) \iff ad = bc$, what is the equivalence class of (3,4)?

Solution: The claim is that $[(3,4)] = \{(3k,4k) : k \neq 0 \in \mathbb{Z}\}$. Firstly, note that every element of this set is an element of [(3,4)] because $3 \cdot (4k) = 4 \cdot (3k) = 12k$, so that $(3,4) \sim (3k,4k)$ for any $k \neq 0$, so we just need to show that every ordered pair that relates to (3,4) is of this form. Suppose that $(3,4) \sim (a,b)$ for some integers $a, b \neq 0$, so that 3b = 4a. Since $3 \mid 4a$ and gcd(3,4) = 1, this says that $3 \mid a$. Similary, $4 \mid b$, so write a = 3m and b = 4n for some integers m, n. This says 12n = 12m, so that n = m. Setting n = m = k, this says (a,b) = (3k,4k) for some integer k as desired.

7. Is the function $g: X/\sim \to \mathbb{Q}$ defined by g([(a, b)]) = ab well defined?

Solution: It is not well-defined; note that $(1, 2) \sim (2, 4)$ but $2 \neq 8$.

8. Define $f: X/\sim \to \mathbb{Q}$ by $f([(a, b)]) = \frac{a}{b}$. Prove that f is a well-defined bijection.

Solution: Suppose that $(a, b) \sim (c, d)$, so that ad = bc. Then $f([(a, b)]) = \frac{a}{b} = \frac{ac}{bc} = \frac{ac}{ad} = \frac{c}{d} = f([(c, d)])$, so that f is well-defined. The function f is clearly surjective, because for any rational number $\frac{a}{b} \in \mathbb{Q}$, we have $f([(a, b)]) = \frac{a}{b}$. Now suppose that f([(a, b)]) = f([(c, d)]). This says $\frac{a}{b} = \frac{c}{d}$, so that ad = bc gives $(a, b) \sim (c, d)$, i.e. [(a, b)] = [(c, d)]. Therefore f is injective, and thus a bijection.