Homework 5 Solutions Tim Smits

1. Compute the following:

- (a) 9284756 mod 8
- (b) $-181374 \mod 29$
- (c) $-3287943 \mod 823$

Solution: Details are omitted.

(a) $4 \mod 8$

- (b) 21 mod 29
- (c) 765 mod 823

2. Reduce the following:

- (a) $1294 \cdot 293452 + 96273 \cdot 4751 \mod 9$
- (b) $84526 \cdot 862967^3 448184 \cdot 591183^2 \mod 15$
- (c) $(-823529) \cdot 19581 234603^3 \mod 23$

Solution: Details are omitted.

- (a) $4 \mod 9$
- (b) $2 \mod 15$
- (c) $22 \mod 23$

3.Compute the following:

- (a) $3^{-1} \mod 8$
- (b) $16^{-1} \mod 29$
- (c) $14^{-1} \mod 4914$

Solution: Use the Euclidean algorithm to find a pair of integers x, y such that ax + ny = 1, where you want to find the inverse of $a \mod n$, so that $a^{-1} \mod n \equiv x \mod n$. The details are omitted.

- (a) $3 \mod 8$
- (b) 20 mod 29
- (c) No solution, since $gcd(14, 4914) \neq 1$.

- 4. Solve the following:
- (a) $3x \equiv 7 \mod 8$
- (b) $1723x \equiv 3574 \mod 4914$
- (c) $-3245x \equiv 5722 \mod{71}$

Solution: Find the inverse of $a \mod n$ and multiply through to solve for $x \mod n$. Details are omitted.

- (a) $x \equiv 5 \mod 8$
- (b) $x \equiv 2104 \mod 4914$
- (c) $x \equiv 2 \mod{71}$

5. Reduce the following, and then find k such that $a^k \equiv 1 \mod n$

- (a) $1769^{234} \mod 31$
- (b) $6247^{5138} \mod 14$
- (c) $289^{63251} \mod 432$

Solution: Details are omitted.

- (a) 16 mod 31 and k = 5.
- (b) 9 mod 14 and k = 6.
- (c) 145 mod 432 and k = 3.

6. Check whether or not a^{-1} exists by computing (a, n). Then use this to prove there is no solution to each congruence equation.

- (a) $10x \equiv 31 \mod 42$
- (b) $18x \equiv 20 \mod 60$
- (c) $63x \equiv 35 \mod 105$

Solution:

- (a) We note that gcd(10, 42) = 2. If $10x \equiv 31 \mod 42$, then there are integers x, y such that 10x + 42y = 31. However, $2 \nmid 31$, so this is a contradiction.
- (b) We note that gcd(18, 60) = 6. If $18x \equiv 20 \mod 60$, then there are integers x, y such that 18x + 60y = 20, which is a contradiction because $6 \nmid 20$.
- (c) We note that gcd(63, 105) = 21. If $63x \equiv 35 \mod 105$ is solvable, there are integers x, y such that 63x + 105y = 35, which is impossible since $21 \nmid 35$.
- 7. Check whether or not a^{-1} exists by computing (a, n), and solve the congruence equation.
 - (a) $10x \equiv 34 \mod 42$

- (b) $18x \equiv 36 \mod 60$
- (c) $63x \equiv 21 \mod 105$

Solution: Find the inverse of $a \mod n$ and multiply through to solve for $x \mod n$. Details are omitted.

- (a) $x \equiv 16 \mod 42$
- (b) $x \equiv 2 \mod 60$
- (c) $x \equiv 2 \mod 105$

8. Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$, and let g = gcd(a, n). Prove that there exists $x \in \mathbb{Z}$ such that $ax \equiv b \mod n$ if and only if $g \mid b$, and that in this case, the solution is given by $x \equiv a'^{-1}b' \mod (n')$, where a = ga', b = gb', and n = gn' for some integers a', b', n'.

Solution: If $ax \equiv b \mod n$, is solvable, then there are integers x, y such that ax + ny = b. Since $g \mid a$ and $g \mid n$, this says $g \mid b$. Conversely, suppose that $g \mid b$. Write a = ga', b = gb', and n = gn' for some integers a', b', n'. Since gcd(a', n') = 1, by Bezout there are integers x, y such that a'x + n'y = 1, so multiplying by b' says a'(xb') + n'(yb') = b'. Multiplying through by g then says a(xb') + n(yb') = b, so that $a(xb') \equiv b \mod n$, so that the congruence is solvable.

When $ax \equiv b \mod n$ has a solution, then ax + ny = b for some integers x, y. Then dividing through by g says that a'x + n'y = b', so $a'x \equiv b' \mod n'$. Since a' is invertible mod n', the solution is given by $x \equiv a'^{-1}b' \mod n'$.