Homework 4 Solutions Tim Smits

1. Prove for all integers a, b, n that if gcd(a, n) = 1 and gcd(b, n) = 1, that gcd(ab, n) = 1.

Solution: By Bezout, there are integers x_0, y_0, x_1, y_1 such that $ax_0 + ny_0 = 1$ and $bx_1 + ny_1 = 1$. Multiplying these expressions together, we find $(ax_0 + ny_0)(bx_1 + ny_1) = 1$, so $ab(x_0x_1) + n(ax_0y_1 + by_0x_1 + ny_0y_1) = 1$. This says $gcd(ab, n) \mid 1$, so that gcd(ab, n) = 1.

2. Let $a, b \neq 0$ be integers, let $k \in \mathbb{N}$. Prove that $gcd(ka, kb) = k \cdot gcd(a, b)$.

Solution: Let $d' = \gcd(ka, kb)$. By Bezout, there are integers x, y such that ax + by = d, where $d = \gcd(a, b)$. Multiplying by k, we see ka(x) + kb(y) = kd, so that $d' \mid kd$, which gives $d' \leq kd$. Now, since $d \mid a$ and $d \mid b$, we have $kd \mid ka$ and $kd \mid kb$, so that kd is a common divisor of ka and kb, so by definition we see $kd \leq d'$. This says d' = kd as desired.

3.

- (a) Let $S = \{p_1, \ldots, p_n\}$ be a finite set of primes. Prove that $P = p_1 \ldots p_n + 1$ has a prime factor not in S.
- (b) Prove there are infinitely many primes.
- (c) Let $P_n = p_1 \dots p_n + 1$ where p_n is the *n*-th prime. Find *n* such that P_n is composite.

Solution:

- (a) For each prime $p_i \in S$, notice that $p_i \nmid P$, because if $p_i \mid P$, then $p_i \mid (P p_1 \dots p_n)$, so $p_i \mid 1$, which is impossible. By the fundamental theorem of arithmetic, P is divisible by some prime number, and the above shows that it cannot be in S.
- (b) Start with any finite list of primes, say p_1, \ldots, p_n . Then by part a), the number $P = p_1 \ldots p_n + 1$ is divisible by a prime not in this list. Therefore, starting with any finite list of primes we can find a new prime, which shows there must be infinitely many.
- (c) Take n = 6: $P_6 = 30031 = 53 \cdot 509$.

4. Prove for integers a, b that if gcd(a, b) = 1, then lcm(a, b) = ab.

Solution: Let $\ell = \text{lcm}(a, b)$. Since $a \mid ab$ and $b \mid ab$, by definition we see $\ell \leq ab$. On the other hand, since $a \mid \ell$ and $b \mid \ell$, since gcd(a, b) = 1 we see that $ab \mid \ell$, so that $ab \leq \ell$ gives $\ell = ab$.

5. Prove that for any natural numbers a, b, k that $lcm(ka, kb) = k \cdot lcm(a, b)$.

Solution: Set $\ell' = \operatorname{lcm}(ka, kb)$ and $\ell = \operatorname{lcm}(a, b)$. Since $a \mid \ell$ and $b \mid \ell$, we see $ka \mid k\ell$ and $kb \mid k\ell$, so $\ell' \leq k\ell$. By definition, $ka \mid \ell'$ and $kb \mid \ell'$. Write $\ell' = (ka)x$ and $\ell' = (kb)y$ for some integers x, y. In particular, $k \mid \ell'$ so $\ell'' = \ell'/k$ is an integer. Then $\ell'' = ax = by$ is a multiple of both a and b, so $\ell \leq \ell''$ by definition of ℓ . Multiplying by k says $k\ell \leq k\ell'' = \ell'$, so that $k\ell = \ell'$.

6. Let $a, b \in \mathbb{N}$. Prove that $gcd(a, b) \cdot lcm(a, b) = ab$.

Solution: Set d = gcd(a, b). Then a = a'd and b = b'd for some relatively prime integers a', b'. By the previous two problems, $\text{lcm}(a, b) = \text{lcm}(a'd, b'd) = d \cdot \text{lcm}(a', b') = d \cdot a'b'$. Multiplying by d says $\text{gcd}(a, b) \cdot \text{lcm}(a, b) = d^2a'b' = ab$.

- 7. Compute the least common multiple of the following pairs of integers:
 - (a) (24, 40)
- (b) (5754,7392)
- (c) (3134376, 1759968)

Solution: Use the Euclidean algorithm to compute the greatest common divisor and then use the previous result to compute the least common multiple. The details are omitted.

- (a) 120
- (b) 1012704
- (c) 1216137888

8. Let $a, b \in \mathbb{N}$ and write $a = \prod_p p^{e_p}$ and $b = \prod_p p^{f_p}$ where the product is taken over all primes.

- (a) Prove that $a \mid b$ if and only if $e_p \leq f_p$ for all prime p.
- (b) Find an expression for gcd(a, b) in terms of the factorization of a and b.
- (c) Find an expression for lcm(a, b) in terms of the factorization of a and b.

Solution:

- (a) Suppose that $a \mid b$, so b = ak for some integer k. Write $k = \prod_p p^{k_p}$ as a product of primes, where only finitely many k_p are non-zero. Then equating factorizations, we see $f_p = e_p + k_p$, i.e. $f_p \ge e_p$ for all prime p. Conversely, if $e_p \le f_p$ for all p, write $f_p = e_p + \varepsilon_p$ where $\varepsilon_p = f_p e_p \ge 0$. Set $k = \prod_p p^{\varepsilon_p}$ which is an integer, so that b = ak says $a \mid b$.
- (b) $\gcd(a,b) = \prod_p p^{\min\{e_p,f_p\}}$. To see this, let $d = \gcd(a,b)$ and write $d = \prod_p p^{d_p}$ into a product of primes where d_p is non-zero for finitely many p. Since $d \mid a$ and $d \mid b$, we see that $d_p \leq e_p$ and $d_p \leq f_p$ for all p, giving $d_p \leq \min\{e_p, f_p\}$ for all p. To get the greatest common divisor, maximize the value of d by maximizing the value of d_p in each inequality by setting $d_p = \min\{e_p, f_p\}$. This is still a divisor of a and b by part a), and this forces it to be the largest such common divisor.

- (c) $\operatorname{lcm}(a,b) = \prod_p p^{\max\{e_p,f_p\}}$. To see this, let $\ell = \operatorname{lcm}(a,b)$ and write $\ell = \prod_p p^{\ell_p}$ into a product of primes where ℓ_p is non-zero for finitely many p. Since $a \mid \ell$ and $b \mid \ell$, we see that $e_p \leq \ell_p$ and $f_p \leq \ell_p$ for all p, giving $\max\{e_p, f_p\} \leq \ell_p$ for all p. To get the *smallest* common multiple, minimize the value of ℓ by minimizing the value of ℓ_p in each inequality by taking $\ell_p = \max\{e_p, f_p\}$. This still gives a multiple of a and b, and this forces it to be the smallest such common multiple.
- 9. Compute the following:
- (a) $gcd(2^43^87^519^1, 2^23^37^411^213^3)$
- (b) $\operatorname{lcm}(2^3 3^2 5^9 1 3^3, 2^5 5^3 7^2 1 3^2 1 7^1)$

Solution: Use the previous problem to take either the minimum/maximum of the exponents on each prime.

- (a) $2^2 3^3 7^4$
- (b) $2^5 3^2 5^9 7^2 1 3^3 17$

10. Let $a, b \in \mathbb{N}$. Prove that if $a^2 \mid b^2$, that $a \mid b$.

Solution: Write $a = \prod_p p^{e_p}$ and $b = \prod_p p^{f_p}$ where the product is taken over all primes and only finitely many exponents are non-zero. Then $a^2 = \prod_p p^{2e_p}$ and $b^2 = \prod_p p^{2f_p}$. Since $a^2 \mid b^2$, we have $2e_p \leq 2f_p$ for all p, which says $e_p \leq f_p$ for all p, so $a \mid b$.