
Homework 3 Solutions

Tim Smits

1. Use the Euclidean Algorithm to find the greatset common divisors of the following pairs of
integers:

(a) (105, 56)

(b) (162, 47)

(c) (−2485, 1704)

(d) (924, 1960)

(e) (−8120,−14355)

Solution: Run the Euclidean algorithm to compute the gcd. The details are omitted.

(a) gcd(105, 56) = 7.

(b) gcd(162, 47) = 1.

(c) gcd(−2485, 1704) = 71.

(d) gcd(924, 1960) = 28.

(e) gcd(−8120,−14355) = 145.

2. Let a, b 6= 0 be integers, and set g = gcd(a, b). Show that any common divisor of a and b must
divide g.

Solution: Let d be a common divisor of a and b, so that d | a and d | b. By Bezout, there
exist integers x and y such that ax + by = g. Since d | a and d | b, there are integers a′, b′ such
that a = a′d and b = b′d. Then g = d(a′x + b′y), so that d | g as desired.

3. Set a = a′g and b = b′g for some integers a′, b′ with g = gcd(a, b). Show that gcd(a′, b′) = 1.

Solution: Write a = a′g and b = b′g for some integers a′, b′. By Bezout, there are integers x, y
such that ax + by = g, so that g(a′x + b′y) = g. Dividing through by g says a′x + b′y = 1. Let
g′ = gcd(a′, b′). Since g′ | a′ and g′ | b′, we see g′ | a′x + b′y = 1, so that g′ = 1.

4. Use the extended Euclidean algorithm to find integers x, y such that ax+by = g for g = gcd(a, b)
for the following pairs of integers:

(a) (509, 94)

(b) (−1260, 816)
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Solution: Run the Euclidean algorithm and use back substitution to write the greatest com-
mon divisor as a linear combination of a and b. The details are omitted.

(a) (x, y) = (41,−222).

(b) (x, y) = (11, 17).

5. Let a, b ∈ Z and Let g = gcd(a, b).

(a) Show that if k ∈ Z, then gk ∈ I(a, b).

(b) Show that if n ∈ I(a, b) that g | n.

Solution:

(a) Let k ∈ Z. By Bezout’s lemma, we have g ∈ I(a, b), so there are integers x, y such that
ax + by = g. Then gk = a(xk) + b(yk), so that gk ∈ I(a, b).

(b) Suppose that n ∈ I(a, b). Then there are integers x, y such that n = ax + by. Since g | a
and g | b, we may write a = a′g and b = b′g for some integers a′, b′. Then n = g(a′x+b′y),
so that g | n.

6. Let a, b be relatively prime integers. Suppose we have an integer solution (x0, y0) to the equation
ax + by = 1. For k ∈ Z, define xk = x0 + bk and yk = y0 − ak.

(a) Show that for all k, axk + byk = 1.

(b) Let (x, y) be another solution to ax + by = 1. Show that x = xk and y = yk for some k.

Solution:

(a) We have axk + byk = a(x0 + bk) + b(y0 − ak) = ax0 + by0 = 1, since (x0, y0) is a solution
to ax + by = 1 by assumption.

(b) Let (x, y) be an arbitrary solution to ax + by = 1. Since ax0 + by0 = 1, subtracting says
a(x− x0) + b(y− y0) = 0, i.e. a(x− x0) = b(y0− y). Since a divides the left hand side, it
also divides b(y0 − y), and since gcd(a, b) = 1, the generalized version of Euclid’s lemma
says that a | (y0 − y). Similarly, we see b | (x − x0). Then y0 − y = as for some integer
s, and x − x0 = at for some integer t, i.e. y = y0 − as and x = x0 + at. Plugging into
the equation ax + by = 1, we see that ax0 + abt + by0 − abs = 1, so that abt − abs = 0.
This then implies that s = t, so setting these equal to a common parameter k shows that
x = xk and y = yk for some k as desired.

7. Let a, b 6= 0 be integers with g = gcd(a, b). Suppose we have an integer solution (x0, y0) to
ax + by = g. For k ∈ Z, define xk = x0 + b′k and yk = y0 − a′k where a = a′g and b = b′g for some
integers a′, b′.

(a) For all k ∈ Z, show that axk + byk = g.

(b) Let (x, y) be another solution to ax + by = 1. Show that x = xk and y = yk for some k.
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Solution:

(a) Write a = a′g and b = b′g for some integers a′, b′ with g = gcd(a, b). We have axk +byk =
a(x0 + b′k) + b(y0 − a′k) = ax0 + by0 + ab′k − ab′k = 1 + ga′b′k − ga′b′k = 1.

(b) Let (x, y) be an arbitrary solution to ax + by = g. Then write a = a′g and b = b′g for
some integers a′, b′, so that g(a′x + b′y) = g. Dividing through by g says a′x + b′y = 1,
so applying problem 8 says x = x0 + b′k and y = y0 − a′k for some k, i.e. x = xk and
y = yk.

8. Write the set of integer solution to the equation 509x + 94y = 1 in set notation.

Solution: Use the fundamental solution (x0, y0) = (41,−222) from 4a and problem 6 to con-
clude any solution (x, y) is of the form x = 41+94k and y = −222−509k for some k. Since each
choice of k gives a solution, the solution set can be written as S = {(41 + 94k,−222− 509k) :
k ∈ Z}.

9. Write the set of integer solutions to the equation −1260x + 816y = 12 in set notation.

Solution: Use the fundamental solution (x0, y0) = (11, 17) from 4b and problem 7 to see every
solution is of the form x = 11 + 68k and y = 17 + 105k for some integer k. Each choice of k
gives a solution, so the solution set can be written as S = {(11 + 68k, 17 + 105k) : k ∈ Z}.

10. Let S ⊂ N be a set with the property that S does not contain a least element. Use strong
induction to show that S is empty. How does this prove the Well-Ordering Principle?

Solution: Note that 0 6∈ S since 0 is the smallest natural number, so if it were in S then S would
have a smallest element, and we said it doesn’t. Now suppose for some k that 0, 1, . . . , k 6∈ S.
Then k + 1 6∈ S, because if it were, then it would be a least element of S, since all the naturals
smaller than S are not contained in S, a contradiction to the assumption that S has no least
element. Therefore by induction, this says n 6∈ S for all n ≥ 0, so that S is empty. We have
shown that if S ⊂ N has no least element, that S must be empty, so taking the contrapositive
says that if S is non-empty, that S has a least element, precisely the statement of the Well-
Ordering Principle.
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