
Homework 2 Solutions

Tim Smits

1. Prove that for any integer n, that 1 | n and −1 | n.

Solution: We have n = 1 · n and n = (−1) · (−n), so that 1 | n and −1 | n as desired.

2. For which integers n is it true that 0 | n?

Solution: We see that 0 | n if and only if there is some integer k such that n = 0 ·k = 0. Since
0 = 0 · 0, this says 0 | 0 so n = 0 is the only such integer.

3. For which integers n is it true that n | 0?

Solution: We see that 0 = 0 · n for any n, so that n | 0 for all n.

4. Why is gcd(0, 0) not defined?

Solution: Since every integer is a divisor of 0, there is no largest positive divisor, making it
impossible to define the gcd.

5. Apply the division algorithm to the following pairs of integers. That is, find (q, r) such that
a = bq + r with 0 ≤ r < b.

(a) (47, 13)

(b) (823, 48)

(c) (−79, 17)

(d) (−6257, 316)

(e) (39582723, 8243)

(f) (82373852, 29574)

Solution: We omit the details of the calculation.

(a) (3, 8)

(b) (17, 7)

(c) (−5, 6)

(d) (−20, 63)

(e) (4801, 8080)

(f) (2785, 10262)
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6.

(a) Suppose that a, b are integers with b < 0. Set b′ = −b. Apply the division algorithm to a, b′

and write the results in terms of b.

(b) Verify that it is still true when b is negative that there exist integers q, r such that a = bq+ r,
but now the bound on r is 0 ≤ r < |b|. This says the division algorithm is true regardless of
if b is positive or negative.

(c) Prove the uniqueness of q and r in this more general theorem.

Solution:

(a) By the division algorithm, we may write a = b′q + r with 0 ≤ r < b′. Since b′ = −b, this
says a = −bq + r with 0 ≤ r < −b.

(b) If b < 0, with b′ = −b part a) says a = −bq + r = b(−q) + r with 0 ≤ r < −b, so that in
general we may write 0 ≤ r < |b| regardless of if b is positive or negative.

(c) Suppose that there are integers q, q′ and r, r′ with 0 ≤ r, r′ < |b| such that a = bq+ r and
a = bq′ + r′. Then bq + r = bq′ + r′ says b(q − q′) = r′ − r. Since b divides the left hand
side, this says b | (r′ − r). However, 0 ≤ r, r′ < |b|, so we must have 0 ≤ |r′ − r| < |b|.
Since b | (r′ − r) if and only if |b| | (r′ − r), the only way this is possible is if |r′ − r| = 0,
i.e. r′ = r. This then says that b(q′ − q) = 0, and since b 6= 0, we get q = q′ as desired.

7. Apply the stronger division algorithm to the following pairs of integers. That is, find (q, r) such
that a = bq + r with 0 ≤ r < |b|.

(a) (47,−13)

(b) (956,−27)

(c) (29657452,−4382)

Solution: We omit the details of the calculation.

(a) (−3, 8)

(b) (−35, 11)

(c) (−6768, 76)

8.

(a) Prove that for any natural numbers a, b, that 2a − 1 divides 2ab − 1.

(b) Show that if 2n − 1 is prime, for some integer n, then n is prime.

(c) Is the converse of the above true?

Solution:

(a) Notice that 2ab− 1 = (2a)b− 1. Use the factorization xb− 1 = (x− 1)(1 +x+ . . .+xb−1)
with x = 2a to see that 2ab − 1 = (2a − 1)(1 + . . . + 2ab−b), so that (2a − 1) | (2ab − 1).
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(b) We prove the contrapositive. If n is not prime, write n = ab for some integers a, b with
1 < a, b < n. Then 2n − 1 = 2ab − 1 which is divisible by 2a − 1 by part a. Since a > 1,
2a−1 > 1, and since a < n we have 2a−1 < 2n−1. This says that 2a−1 is a non-trivial
divisor of 2n − 1, so it is not prime.

(c) No. For p = 11, we have 211 − 1 = 2047 = 23 · 89.

9. Let P be a proposition about integers, and assume the following statements are true:

(a) P (0) is true.

(b) for all k ∈ Z, P (k) =⇒ P (k + 1).

(c) for all k ∈ Z, P (k) =⇒ P (k − 1).

Prove that P (n) is true for all n ∈ Z.

Solution: Conditions a) and b) along with the principle of mathematical induction immedi-
ately show that P (k) is true for k ≥ 0. Define a proposition Q by Q(k) = P (−k). Notice
that Q(0) is true, and since P (−k) =⇒ P (−k − 1) = P (−(k + 1)) = Q(k + 1), we see that
Q(k) =⇒ Q(k + 1). Therefore by induction, we see that Q(n) is true for all n ≥ 0, i.e. P (n)
is true for all n ≤ 0. Putting this together, P (n) is true for all n ∈ Z.

10. Is the previous result still true if we change the base case from k = 0 to some other k = k0 ∈ Z?

Solution: Yes, the choice of base case is irrelevant. Since P (k0) is true, induction says P (n)
is true for all n ≥ k0, and the above arguement still works to show that P (n) is true for all
n ≤ k0, i.e. for all n ∈ Z.
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