

Our proof will use two theorems about lattices:

Minkowski's Thur. Let SEIR be Convex, O-Symmetric region, and L be a lattice. If Area(S) > 4 Area(T) then S contains a non-zero lattice point of L.

Pick's Thm: Let L be a lattice in \mathbb{R}^2 . Let P be a convex polygon with vesticies on L. $Area(P) = (Ir \ge B-1)Area(T)$

I = # lattice pts inside P B = # lattice pts on boundary of P

Thm: (Fermat)

PEI mod 4 \implies $p = \chi^2_{ry^2}$ for $\chi_{ry} \in \mathbb{Z}$. More ones, this representation is unique, up to order of rig and up to Sign.

$$\Rightarrow \left(\frac{x}{y}\right)^{2} \equiv -1 \mod p$$

$$\Rightarrow \left(\frac{-1}{p}\right) = 1$$

$$\Rightarrow p \equiv 1 \mod 4.$$

Now for the hard part:

$$\Rightarrow [Assume p \equiv 1 \mod 4.$$

Then $\left(\frac{-1}{p}\right) = 1.$ Choose
 $1 \leq K \leq p \leq 1 \leq 1.$ $K^{2} \equiv -1 \mod p$

Let $S = S(x,y) : x_{tv} < 2p$

· `` We will choose a special lattice L, and Show S Contains a lattice point of L. Define $L = \{(x,y): y = KX \mod p\}$ $= \operatorname{Span}_{\mathbb{Z}} \left\{ \begin{pmatrix} x \\ x \end{pmatrix}, \begin{pmatrix} 0 \\ p \end{pmatrix} \right\}$ What's Special about L?

Since
$$2ttp > 4p$$
, by Minkowski
Scontains a lattice point of L.
le('s Say (1,b) is such a lattice point.
 $a_{rb}^{2} > 2p$
 $a_{rb}^{2} > 2p$
 $a_{rb}^{2} = 0 \mod p$
 $\Rightarrow a_{rb}^{2} = p$.
Vow we just need to show
unque ness.
This amounts to show in the
points on the circle
 $X^{2}ty^{2} = p: 2 - C$
 $(a,b), (a,-b), (-a,b), (-a,-b)$

I

(b,a),(b,-a),(-b,a),(-b,-a)

For any (x,y) & C, note that one of (x,y) and (x,-y) must lie on C.NL:

Construct à convex polygon P out of the lattice points in CNL. By Pick's theorem, $\operatorname{Area}(P) = (\overline{L} + \frac{\overline{P}}{Z} - 1) \operatorname{Area}(T)$ By def of L, the only interior lattice pt is origin, because all lattice pts Bahsty Xij = 0 mod J. So I = 11 non-Zero This means that all lattice pts are on boundary of Pr Area (P) = # 1 attace Pts - P (#lattice Pts).p = Z. Area (P)

 $Area(P) \ \angle Area(C) = \pi p$

q. (#lattue 245) < 2rtp =) Alattice pts 2 ZTT.

Fral Observation:

if $(a,b) \in Cul$

then a EKbonod p

 \implies Ka \equiv -b mod p, so $(a,b) \in CNL \implies (-b,a) \in CNL$ Also, note $(-a, -b) \in CNL$ So that $(b, -a) \in CNL$ So # lattice pts dwischle by 4 \implies # lattice pfs = #Challenge: Modify this organist prove

 $p = \chi^2 r 2y^2$ for some $\chi y \in \mathbb{Z}$ $\neq \Rightarrow p = 1,3 \mod 8.$ (an you do the same for $p = X^2 + 3y^2$?