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The sequence of triangular numbers are defined via Tn = n(n+1)
2

. They are named as
such because they count the total number of dots in an equilateral triangle with n dots per
side. The first few terms of the sequence are given by 1, 3, 6, 10, 15, 21, 28, 36, . . .. We see
that T8 = 62 is a square. Are there any other values of n such that Tn is a square? If so,
how many? To answer this question, we take the following approach. We are searching for

integers n and k such that n(n+1)
2

= k2, or equivalently, n2 + n = 2k2. We can think of
this as a Diophantine problem by trying to find integer points (n, k) with n, k > 0 on the
hyperbola x2+x = 2y2. Multiplying through by 2 and completing the square, we can rewrite
this as (2x + 1)2 − 1 = 8y2. Setting X = 2x + 1 and Y = 2y, we are searching for integer
points (X, Y ) with X, Y > 0 on the hyperbola x2 − 2y2 = 1. One such solution is the pair
(X, Y ) = (3, 2), which after solving for x and y yields the integer point (1, 1) on our original
curve.

The Diophantine equation x2−2y2 = 1 falls under a special class of Diophantine equations
known as Pell equations, which are equations of the form x2 −Dy2 = 1 for D a squarefree
positive integer. The remainder of this handout will be dedicated to studying the Pell equa-
tion x2 −Dy2 = 1, to answer our original question.

Set Z[
√
D] = {a + b

√
D : a, b ∈ Z}. The secret to solving our Pell equation will be to

study the arithmetic of Z[
√
D]. For any α = x+y

√
D, β = x′+y′

√
D ∈ Z[

√
D], we compute

α + β = (x+ x′) + (y + y′)
√
D

α · β = (xx′ +Dyy′) + (xy′ + x′y)
√
D

the key point being that Z[
√
D] is closed under addition and multiplication.

Proposition 1. Suppose that (x, y) and (x′, y′) are integer solutions to x2−Dy2 = 1. Then

the coefficients of (x+ y
√
D)(x′ + y′

√
D) are integer solutions to x2 −Dy2 = 1.

Proof. We have (x+ y
√
D)(x′+ y′

√
D) = (xx′+Dyy′) + (xy′+x′y)

√
D, so we wish to check

that (xx′ + Dyy′, xy′ + x′y) is a solution. We compute (xx′ + Dyy′)2 − D(xy′ + x′y)2 =
(x2x′2 +2Dxyx′y′+D2y2y′2)−D(x2y′2 +2xyx′y′+x′2y2) = (x2−Dy2)x′2−D(x2−Dy2)y′2 =
(x2 −Dy2)(x′2 −Dy′2) = 1 · 1 = 1. �

Corollary 0.1. Suppose that (x, y) is an integer solution to x2 −Dy2 = 1. For any n ≥ 1,

write (x+ y
√
D)n = xn + yn

√
D. Then (xn, yn) is a solution to x2 −Dy2 = 1.

Proof. For n = 0 we trivially have x0 = 1 and y0 = 0 and (1, 0) is a solution. Next, assume
n ≥ 1. The result is true for n = 1 by assumption, so assume that (xn, yn) is a solution to

x2 − Dy2 = 1. We have xn+1 + yn+1

√
D = (x + y

√
D)n+1 = (x + y

√
D)n · (x + y

√
D) =

(xn + yn
√
D)(x+ y

√
D) = (xxn +Dyyn) + (xny+ xyn)

√
D. This says xn+1− xxn−Dyyn =

(xny + xyn − yn+1)
√
D. Since the left hand side is an integer and the right hand side is an
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integer times an irrational number, this forces xn+1 = xxn + Dyyn and yn+1 = xny + xyn.
By the above proposition, (xn+1, yn+1) is a solution. Therefore by induction, (xn, yn) is a
solution for n ≥ 1.

�

On our curve are the trivial solutions (±1, 0). As long as (x, y) 6= (±1, 0) then the various

powers (x + y
√
D)n are all distinct, and give rise to infinitely many integer solutions to

x2 −Dy2 = 1. It turns out we can say something about the structure of the solutions. We
will call a solution positive if both coordinates are positive.

Proposition 2. Let (x, y) be a positive solution to x2−Dy2 = 1, and let (x′, y′) be any other

solution. Then x+ y
√
D < x′ + y′

√
D if and only if x < x′ and y < y′.

Proof. The backwards direction is obvious, so we need only to prove the forward direction.
Suppose that (x, y) is a positive solution and (x′, y′) is any solution with x+y

√
D < x′+y′

√
D.

Since (x, y) is positive, we have x, y ≥ 1 so x′ + y′
√
D > x + y

√
D > 1. Inverting says

0 < x′ − y′
√
D < 1, so x′ + y′

√
D > x′ − y′

√
D. This says 2y′

√
D > 0, so y′ > 0. Since

x′ − y′
√
D > 0, this says x′ > y′

√
D ≥

√
D > 1, so (x′, y′) is a positive solution. Now from

x + y
√
D < x′ + y′

√
D, inverting says x − y

√
D > x′ − y′

√
D, so (x + x′) + (y − y′)

√
D <

(x + x′) + (y′ − y)
√
D, which yields y′ > y. This then give x2 = 1 + Dy2 < 1 + Dy′2 = x′2,

and since x, x′ > 0 taking a square root tells us x < x′. �

If we find a positive solution (x, y) with y minimal, then in fact, x is minimal as well. This
is because if (x′, y′) is any other solution, we have x2 = 1 + Dy2 < 1 + Dy′2 = x′2, and so
once more, because (x, y) is positive this means (x′, y′) is positive, so x < x′. We will call a
solution to x2 −Dy2 = 1 with x, y minimal the fundamental solution to x2 −Dy2 = 1.

Theorem 0.2. Let (x1, y1) be the fundamental solution to x2 − Dy2 = 1. If (x, y) is any
other positive solution to x2 − Dy2 = 1, then x = xn and y = yn for some n ≥ 1, where
(x1 + y1

√
D)n = xn + yn

√
D.

Proof. Since (x1, y1) is a positive solution, we have x1 +y1
√
D > 1, so (x1 +y1

√
D)n →∞ as

n→∞. Therefore we can find N such that (x1 + y1
√
D)N+1 > x+ y

√
D ≥ (x1 + y1

√
D)N .

Dividing through says 1 ≤ (x+ y
√
D)(x1 + y1

√
D)−N < x1 + y1

√
D. Write (x+ y

√
D)(x1 +

y1
√
D)−N = a + b

√
D for some a, b. Proposition 1 and corollary 0.1 says that (a, b) is a

solution to Pell’s equation, and since 1 ≤ a+ b
√
D, we have that (a, b) is a positive solution

by the proof of proposition 2. Therefore, from a+ b
√
D < x1 + y1

√
D, applying proposition

2 says a < x1 and b < y1, which contradicts that (x1, y1) is the fundamental solution.

Therefore, x+ y
√
D = (x1 + y1

√
D)N for some N . �

We have not yet shown that a Pell equation even has a non-trivial solution. As one
expects, it does, but this is irrelevant for our purposes: we are concerned with a specific Pell
equation, and so we will just find the fundamental solution by hand.

Corollary 0.3. The positive solutions to x2−2y2 = 1 are ( (3+2
√
2)n+(3−2

√
2)n

2
, (3+2

√
2)n−(3−2

√
2)n

2
√
2

)

for n ≥ 1.

Proof. To find the fundamental solution to x2 − 2y2 = 1, we look for the solution with
minimal y-coordinate. It’s immediately obvious that (3, 2) is the fundamental solution, so
any positive solution is of the form (xn, yn) where xn + yn

√
2 = (3 + 2

√
2)n. Inverting says
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xn − yn
√

2 = (3− 2
√

2)n. Set α = 3 + 2
√

2, and β = 3− 2
√

2. This says 2xn = αn + βn and
2
√

2yn = αn − βn, so solving for xn and yn gives the desired form. �

Theorem 0.4. The positive solutions to x2 + x = 2y2 are given by

(x, y) =

(
(3 + 2

√
2)n + (3− 2

√
2)n − 2

4
,
(3 + 2

√
2)n − (3− 2

√
2)n

4
√

2

)
Proof. The above corollary tells us the positive solutions (X, Y ) to x2 − 2y2 = 1. As deter-
mined in the introduction, we have x = X−1

2
and y = Y

2
. �

We’ve determined that there are infinitely many such triangular numbers that are squares.
Plugging the first few values of n into the coordinates above, we see the first few square
triangular numbers are T1 = 12, T8 = 62, T49 = 352, T288 = 2042, and T1681 = 11892.


