PELL’S EQUATION AND SQUARE TRIANGULAR NUMBERS

TIM SMITS

The sequence of triangular numbers are defined via T, = nintl), They are named as

such because they count the total number of dots in an equilateral triangle with n dots per
side. The first few terms of the sequence are given by 1,3,6,10,15,21,28,36,.... We see
that Ty = 62 is a square. Are there any other values of n such that 7T}, is a square? If so,
how many? To answer this question, we take the following approach. We are searching for
integers n and k such that @ = k2, or equivalently, n? + n = 2k%. We can think of
this as a Diophantine problem by trying to find integer points (n, k) with n,k > 0 on the
hyperbola 22+ = 2y%. Multiplying through by 2 and completing the square, we can rewrite
this as (22 + 1) — 1 = 8y%. Setting X = 2z + 1 and Y = 2y, we are searching for integer
points (X,Y) with X,Y > 0 on the hyperbola 22 — 2y?> = 1. One such solution is the pair
(X,Y) = (3,2), which after solving for z and y yields the integer point (1, 1) on our original
curve.

The Diophantine equation 2% —2y? = 1 falls under a special class of Diophantine equations
known as Pell equations, which are equations of the form 22 — Dy? = 1 for D a squarefree
positive integer. The remainder of this handout will be dedicated to studying the Pell equa-
tion 22 — Dy? = 1, to answer our original question.

Set Z[vD] = {a +bVD : a,b € Z}. The secret to solving our Pell equation will be to
study the arithmetic of Z[v/D]. For any o = 244D, 8 = 2’ +y/'/D € Z[v/D], we compute

a+pf=(x+a)+(y+y)VD
a-f = (za' + Dyy') + (zy + 2'y)VD
the key point being that Z[v/D] is closed under addition and multiplication.

Proposition 1. Suppose that (x,y) and (z',y') are integer solutions to x> — Dy?> = 1. Then
the coefficients of (x +yv/D)(z' +y'v/D) are integer solutions to x> — Dy* = 1.

Proof. We have (x4 yvD)(z' +y'vV/D) = (za’ + Dyy') + (xy +2'y)v/D, so we wish to check
that (zz’ + Dyy',zy’ + 2'y) is a solution. We compute (xz’ + Dyy')? — D(xy’ + 2'y)* =
(222" + 2Dzya’y + D2y2y’?) — D22y + 2xyr'y’ +ay?) = (22 — Dy?)a" — D(a? — Dy?)y? =
(22 — Dy*)(2* — Dy?*)=1-1=1. O

L,

Corollary 0.1. Suppose that (x,vy) is an integer solution to x*> — Dy*> = 1. For any n >
write (x +yvVD)" = x, + yuV'D. Then (2,,y,) is a solution to x*> — Dy? = 1.

Proof. For n = 0 we trivially have o = 1 and yo = 0 and (1,0) is a solution. Next, assume
n > 1. The result is true for n = 1 by assumption, so assume that (z,,y,) is a solution to
2> — Dy?> = 1. We have 2,41 + yp1 VD = (z +yvVD)"*' = (z +yvV/D)" - (x + yVD) =
(20 + ynV'D)(z +yv/D) = (22, + Dyyn) + (2ny + 2y,)v/D. This says z,41 — 22, — Dyy, =

(XY + Ty — ynﬂ)\/ﬁ. Since the left hand side is an integer and the right hand side is an
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integer times an irrational number, this forces x,.1 = xx,, + Dyy, and y,11 = T,y + TYn.
By the above proposition, (z,11,¥,+1) is a solution. Therefore by induction, (z,,y,) is a
solution for n > 1.

O

On our curve are the trivial solutions (£1,0). As long as (z,y) # (£1,0) then the various
powers (z + y\/ﬁ)” are all distinct, and give rise to infinitely many integer solutions to
2% — Dy* = 1. Tt turns out we can say something about the structure of the solutions. We

will call a solution positive if both coordinates are positive.

Proposition 2. Let (z,y) be a positive solution to x* — Dy? = 1, and let (2',y') be any other
solution. Then x +yvVD < &' +y'\/D if and only if v <z’ and y < y/.

Proof. The backwards direction is obvious, so we need only to prove the forward direction.
Suppose that (z,y) is a positive solution and (27, /) is any solution with z+yv/D < 2/+y'v/D.
Since (z,y) is positive, we have z,y > 1 so 2/ + y'v/D > = 4+ y/D > 1. Inverting says
0<a —yvVD <1,s0z' +yvVD > a' —y+/D. This says 2y/v/D > 0, so y > 0. Since
2’ —y'/D > 0, this says 2’ > y/v/D > /D > 1, so (2',4/) is a positive solution. Now from
z+yvD < 2’ +y'\/D, inverting says z — yvVD > &' —y'/D, so (z + ') + (y —y/)VD <
(z + ') + (v — y)V/D, which yields i/ > y. This then give 22 = 1 + Dy? < 1+ Dy?> = 22,
and since x, 2’ > 0 taking a square root tells us = < z’. O
If we find a positive solution (x,y) with y minimal, then in fact, x is minimal as well. This
is because if (z/,%) is any other solution, we have 2 = 1 + Dy* < 1 + Dy = 2/?, and so
once more, because (z,y) is positive this means (z2',y’) is positive, so x < 2’. We will call a
solution to 22 — Dy? = 1 with z,y minimal the fundamental solution to x?> — Dy? = 1.

Theorem 0.2. Let (z1,y1) be the fundamental solution to x> — Dy* = 1. If (x,y) is any
other positive solution to x®> — Dy?> = 1, then x = x,, and y = y, for some n > 1, where

(x1 + yl\/ﬁ)" =z, + yn\/ﬁ.

Proof. Since (x1, 1) is a positive solution, we have +11vD > 1, so (21 +y1\/5)” — 00 as
n — co. Therefore we can find N such that (z; + y,vVD)N*' > 2 +yv/D > (z, + VD)V,
Dividing through says 1 < (z +yvD)(z1 +11vVD) N < 21 + y,v/D. Write (z 4+ yv/D)(z; +
y1v'D)™N = a + by/D for some a,b. Proposition 1 and corollary 0.1 says that (a,b) is a
solution to Pell’s equation, and since 1 < a + byv/D, we have that (a,b) is a positive solution
by the proof of proposition 2. Therefore, from a + bv/D < x1 + y1V/'D, applying proposition
2 says a < z7 and b < y;, which contradicts that (z1,7;) is the fundamental solution.
Therefore, = + yv/D = (21 + y1v/D)" for some N. d

We have not yet shown that a Pell equation even has a non-trivial solution. As one
expects, it does, but this is irrelevant for our purposes: we are concerned with a specific Pell
equation, and so we will just find the fundamental solution by hand.

(3+2v2)"+(3-2v2)" (3+2\/§)”—(3—2ﬁ)")

Corollary 0.3. The positive solutions to x*—2y* = 1 are ( . , NG

forn > 1.

Proof. To find the fundamental solution to z? — 2y?> = 1, we look for the solution with
minimal y-coordinate. It’s immediately obvious that (3,2) is the fundamental solution, so
any positive solution is of the form (z,,%,) where z, + y,v/2 = (3 +2v/2)". Inverting says
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Ty — YnV2 = (3—2v2)". Set a = 3+ 22, and B = 3 — 2v/2. This says 2z, = o + 3" and
22y, = a™ — ", so solving for z,, and vy, gives the desired form. O

Theorem 0.4. The positive solutions to x> + x = 2y are given by
(5.9) = <(3 +2V2)" 4+ (3 - 2V/2)" — 2 (3+2v2)" — (3 - 2\/5)")
4 44/2
Proof. The above corollary tells us the positive solutions (X,Y) to 22 — 2y? = 1. As deter-
mined in the introduction, we have x = % and y = % 0

We’ve determined that there are infinitely many such triangular numbers that are squares.
Plugging the first few values of n into the coordinates above, we see the first few square
triangular numbers are T1 = 12, Tg = 62, T49 = 352, ngg = 2042, and T1681 = 11892



